Lesson 6

A-Level Pure Mathematics : Year 2
 Trigonometric Identities

6.1 Examination Questions

A typical examination question will revolve around the solving of a trigonometric equation that is in essence a quadratic equation. In order to obtain the quadratic it may well be required to use one of the equations,

$$
\begin{gathered}
\cos ^{2} \theta+\sin ^{2} \theta=1 \\
1+\tan ^{2} \theta=\sec ^{2} \theta \\
\cot ^{2} \theta+1=\csc ^{2} \theta
\end{gathered}
$$

6.2 Example

C3 Examination question from January 2012, Q5.
Solve, for $0 \leqslant \theta \leqslant 180^{\circ}, \quad 2 \cot ^{2} 3 \theta=7 \operatorname{cosec} 3 \theta-5$
Give your answers in degrees to 1 decimal place.

Teaching Video : http://www.NumberWonder.co.uk/v9040/6a.mp4

Watch the video from "Exam Solutions"
Write out a solution to the question.

14

6.3 Exercise

Each question comes with Video Support from "Exam Solutions"
You are not expected to watch these videos.
They are there for when you need a helping hand.

> Any solution based entirely on graphical or numerical methods is not acceptable
> Marks Available : 55

Question 1

C3 Examination question from January 2011, Q3
Find all the solutions of $2 \cos 2 \theta=1-2 \sin \theta$ in the interval $0 \leqslant \theta \leqslant 360^{\circ}$

Question 2

C3 Examination question from January 2010, Q8
Solve, $\quad \operatorname{cosec}^{2} 2 x-\cot 2 x=1 \quad$ for $0 \leqslant x \leqslant 180^{\circ}$

Need help with Question 2 ?
http://www.NumberWonder.co.uk/v9040/61.mp4

Question 3

C3 Examination question from June 2011, Q6
(a) Prove that, $\quad \frac{1}{\sin 2 \theta}-\frac{\cos 2 \theta}{\sin 2 \theta}=\tan \theta, \quad \theta \neq 90 n^{\circ}, n \in \mathbb{Z}$ [4 marks]
(b) Hence, or otherwise
(i) show that $\tan 15^{\circ}=2-\sqrt{3}$
(ii) solve, for $0<x<360^{\circ}, \quad \operatorname{cosec} 4 \theta-\cot 4 \theta=1$

Need help with Question 3 ?
http://www.NumberWonder.co.uk/v9040/6c.mp4 (Part 1)
http://www.NumberWonder.co.uk/v9040/6d.mp4 (Part 2)
http://www.NumberWonder.co.uk/v9040/6e.mp4 (Part 3)

Part 1
Part 2

Part 3

Question 4

C3 Examination question from June 2006, Q6
(a) Using $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$, show that $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta \equiv 1$
(b) Hence, or otherwise, prove that

$$
\operatorname{cosec}^{4} \theta-\cot ^{4} \theta \equiv \operatorname{cosec}^{2} \theta+\cot ^{2} \theta
$$

(c) Solve, for $90^{\circ} \leqslant \theta<180^{\circ}$,

$$
\operatorname{cosec}^{4} \theta-\cot ^{4} \theta=2-\cot \theta
$$

Need help with Question 4 ?
http://www.NumberWonder.co.uk/v9040/6f.mp4 (Part 1)
http://www.NumberWonder.co.uk/v9040/6g.mp4 (Part 2)

Part 1

Part 2

Question 5

C3 Examination question from June 2008, Q5
(a) Given that $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$, show that $1+\cot ^{2} \theta \equiv \operatorname{cosec}^{2} \theta$
(b) Solve, for $0 \leqslant \theta<180^{\circ}$, the equation

$$
2 \cot ^{2} \theta-9 \operatorname{cosec} \theta=3
$$

giving your answers to 1 decimal place.
[6 marks]

Need help with Question 5 ?
http://www.NumberWonder.co.uk/v9040/6h.mp4 (Part 1)
http://www.NumberWonder.co.uk/v9040/6i.mp4 (Part 2)

Part 1
Part 2

Question 6

C3 Examination question from June 2010, Q1
(a) Show that

$$
\frac{\sin 2 \theta}{1+\cos 2 \theta}=\tan \theta
$$

(b) Hence find, for $-180^{\circ} \leqslant \theta \leqslant 180^{\circ}$, all the solutions of

$$
\frac{2 \sin 2 \theta}{1+\cos 2 \theta}=1
$$

Give your answers to 1 decimal place.

Need help with Question 6 ?
http://www.NumberWonder.co.uk/v9040/6j.mp4 (Part 1)
http://www.NumberWonder.co.uk/v9040/6k.mp4 (Part 2)

Part 1
Part 2

Question 7

C3 Examination question from January 2007, Q1
(a) By writing $\sin 3 \theta$ as $\sin (2 \theta+\theta)$, show that

$$
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta
$$

(b) Given that $\sin \theta=\frac{\sqrt{3}}{4}$ find the exact value of $\sin 3 \theta$

Need help with Question 7 ?
http://www.NumberWonder.co.uk/v9040/6m.mp4 (Part 1)
http://www.NumberWonder.co.uk/v9040/6n.mp4 (Part 2)

Part 1

Part 2

All examination questions are © Pearson Education Ltd
and have appeared in the Edexcel GCE (A level) Pure Mathematics examination papers

This document is Licensed for use by staff and students at Shrewsbury School, England
To obtain a Licence please visit www.NumberIsAll.com
© 2020 Number Is All

