### 6.4 Homework

> Any solution based entirely on graphical or numerical methods is not acceptable
> Marks Available $: 32$

## Question 1

A-Level Paper 1 Examination question from June 2018, Q8
The depth of water, $D$ metres, in a harbour on a particular day is modelled by

$$
D=5+2 \sin (30 t)^{\circ} \quad 0 \leqslant t \leqslant 24
$$

where $t$ is the number of hours after midnight.
A boat enters the harbour at 6.30 am and it takes 2 hours to load its cargo. The boat requires the depth of water to be at least 3.8 metres before it can leave the harbour.
( a ) Find the depth of the water in the harbour when the boat enters the harbour.

## [ 1 mark ]

( b ) Find, to the nearest minute, the earliest time the boat can leave the harbour.

## Question 2

A-Level Paper 2 Examination question from June 2018, Q12 (a) edited Prove that

$$
1-\cos 2 \theta \equiv \tan \theta \sin 2 \theta \quad \theta \neq \frac{(2 n+1) 180^{\circ}}{2}, n \in \mathbb{Z}
$$

## Question 3

A-Level C3 Examination question from June 2017, Q9
( a ) Prove that

$$
\sin 2 x-\tan x \equiv \tan x \cos 2 x \quad x \neq(2 n+1) 90^{\circ}, n \in \mathbb{Z}
$$

[ 4 marks ]
(b) Given that $x \neq 90^{\circ}$ and $x \neq 270^{\circ}$ solve for $0 \leqslant x<360^{\circ}$ $\sin 2 x-\tan x=3 \tan x \sin x$
Give your answers in degrees to one decimal place where appropriate

## Question 4

A-Level Paper 1 Examination question from June 2019, Q6
( a ) Solve, for $-180^{\circ} \leqslant \theta \leqslant 180^{\circ}$, the equation $5 \sin 2 \theta=9 \tan \theta$ giving your answers, where necessary, to one decimal place.
(b) Deduce the smallest positive solution to the equation

$$
5 \sin \left(2 x-50^{\circ}\right)=9 \tan \left(x-25^{\circ}\right)
$$

## Question 5

A-Level Paper 2 Examination question from June 2019, Q12
( a ) Prove, $\frac{\cos 3 \theta}{\sin \theta}+\frac{\sin 3 \theta}{\cos \theta} \equiv 2 \cot 2 \theta \quad \theta \neq(90 n)^{\circ}, n \in \mathbb{Z}$
( b ) Hence solve, for $90^{\circ}<\theta<180^{\circ}$, the equation

$$
\frac{\cos 3 \theta}{\sin \theta}+\frac{\sin 3 \theta}{\cos \theta}=4
$$

giving any solutions to one decimal place

