## Lesson 7

## A-Level Pure Mathematics : Year 2 <br> Trigonometric Identities

### 7.1 Addition of Trigonometric Waveforms

A surprising omission in the trigonometric expressions considered thus far are simple sums of sine and cosine such as, for example,

$$
y=3 \sin \theta+7 \cos \theta
$$

What makes this tricky to get a grip of is that there are no squares of trigonometric functions to manipulate. As a fallback strategy, graphs can be considered.
The obvious question to ask is "how complicated is the resulting waveform"?


$$
y=3 \sin \theta
$$



$$
y=7 \cos \theta
$$

The resulting waveform for $y=3 \sin \theta+7 \cos \theta$ is surprisingly simple !


The waveform for $y=3 \sin \theta+7 \cos \theta$ is not complicated at all ! It's a sine wave moved left about $65^{\circ}$ and height between 7 and 8 .

Knowing that the resulting wave is a sine wave is the key to getting an exact answer because the form of the answer has to be,

$$
R \sin (\theta+\alpha)
$$

where $\alpha$ is the shift left, and $R$ is the height or amplitude.

Question : Express $3 \sin \theta+7 \cos \theta$ in the form $R \sin (\theta+\alpha)$ for $0<\alpha<90^{\circ}$

## Answer:

$$
R \sin (\theta+\alpha)=R \sin \theta \cos \alpha+R \cos \theta \sin \alpha
$$

which is required to be $3 \sin \theta+7 \cos \theta$

$$
\therefore R \cos \alpha=3 \text { and } R \sin \alpha=7
$$

Solving these two equations simultaneously by division,

$$
\begin{aligned}
\frac{R \sin \alpha}{R \cos \alpha} & =\frac{7}{3} \\
\alpha & =\arctan \left(\frac{7}{3}\right) \\
\alpha & =66.8^{\circ}
\end{aligned}
$$

For reasons to be explained shortly,

$$
\begin{aligned}
R & =\sqrt{7^{2}+3^{2}} \\
& =7.62
\end{aligned}
$$

## Conclusion :

$3 \sin \theta+7 \cos \theta=7.62 \sin \left(\theta+66.8^{\circ}\right)$

### 7.2 Why applying Pythagoras' theorem gives the value of $\boldsymbol{R}$

$$
\begin{aligned}
\sqrt{(R \sin \alpha)^{2}+(R \cos \alpha)^{2}} & =\sqrt{R^{2} \sin ^{2} \alpha+R^{2} \cos ^{2} \alpha} \\
& =\sqrt{R^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)} \\
& =\sqrt{R^{2}} \quad \text { because } \cos ^{2} \alpha+\sin ^{2} \alpha=1 \\
& =R
\end{aligned}
$$

### 7.3 Example

Write $8 \sin \theta+15 \cos \theta$ in the form $R \sin (\theta+\alpha)$ for $0<\alpha<90^{\circ}$

Teaching Video : http://www.NumberWonder.co.uk/v9040/7.mp4


After watching the Teaching Video, write out a solution in the space below,

## [19

### 7.4 Exercise

> Any solution based entirely on graphical
> or numerical methods is not acceptable
> Marks Available : 40

## Question 1

(i) Write $2 \sin \theta+\sqrt{5} \cos \theta$ in the form $R \sin (\theta+\alpha)$ for $0<\alpha<90^{\circ}$
(ii) Keeping in mind that the maximum that $\sin (\theta+\alpha)$ can be, regardless of $\alpha$, is 1 , what is the maximum value of $2 \sin \theta+\sqrt{5} \cos \theta$ ?
[ 1 mark]
( iii ) Keeping in mind that the minimum that $\sin (\theta+\alpha)$ can be, regardless of $\alpha$, is -1 , what is the minimum value of $2 \sin \theta+\sqrt{5} \cos \theta$ ?
[ 1 mark ]
(iv) Solve the equation $2 \sin \theta+\sqrt{5} \cos \theta=1.5$

Give both solutions that are in the interval $0^{\circ}<\theta<360^{\circ}$

## Question 2

(i) Write $\sqrt{3} \sin \theta+\cos \theta$ in the form $R \sin (\theta+\alpha)$ for $0<\alpha<90^{\circ}$
(ii) What is the minimum value of $\sqrt{3} \sin \theta+\cos \theta$ ?
( iii ) What is the maximum value of $3 \sin \theta+\sqrt{3} \cos \theta$ ?
[ 1 mark ]
(iv) Solve the equation $\sqrt{3} \sin \theta+\cos \theta=\sqrt{2}$ Give both solutions that are in the interval $0^{\circ}<\theta<360^{\circ}$

## Question 3

(i) Write $\sin \theta+\cos \theta$ in the form $R \sin (\theta+\alpha)$ for $0<\alpha<90^{\circ}$
( ii ) What is the minimum value of $\sin \theta+\cos \theta$ ?
[ 1 mark ]
(iii ) What is the exact maximum value of $\frac{1}{\sin \theta+\cos \theta+3}$ ?
[ 2 mark ]
(iv) Solve the equation $\sin \theta+\cos \theta=1$ over the interval $0 \leqslant \theta \leqslant 360^{\circ}$ giving all solutions as exact values.

## Question 4

Find a formula for $\alpha$ in terms of $A$ and $B$ when $A \sin \theta+B \cos \theta$ is written in the form $R \sin (\theta+\alpha)$ for $0<\alpha<90^{\circ}$

## Question 5

(i) Expand the brackets; $\cos (\theta+\alpha)$

## [ 1 mark ]

( ii ) Write $9 \cos \theta-12 \sin \theta$ in the form $R \cos (\theta+\alpha)$ for $0<\alpha<90^{\circ}$ Give $\alpha$ accurate to three significant figures.
( iii ) Solve the equation $9 \cos \theta-12 \sin \theta=15$ for $0<\theta<360^{\circ}$

