Lesson 7

A-Level Pure Mathematics : Year 2 Trigonometric Identities

7.1 Addition of Trigonometric Waveforms

A surprising omission in the trigonometric expressions considered thus far are simple sums of *sine* and *cosine* such as, for example,

 $y = 3 \sin \theta + 7 \cos \theta$

What makes this tricky to get a grip of is that there are no squares of trigonometric functions to manipulate. As a fallback strategy, graphs can be considered.

The resulting waveform for $y = 3 \sin \theta + 7 \cos \theta$ is surprisingly simple !

The waveform for $y = 3 \sin \theta + 7 \cos \theta$ is not complicated at all ! It's a *sine* wave moved left about 65° and height between 7 and 8.

Knowing that the resulting wave is a *sine* wave is the key to getting an exact answer because the form of the answer has to be,

 $R \sin(\theta + \alpha)$

where α is the shift left, and *R* is the height or *amplitude*.

Question: Express $3\sin\theta + 7\cos\theta$ in the form $R\sin(\theta + \alpha)$ for $0 < \alpha < 90^{\circ}$

Answer:

$$R\sin(\theta + \alpha) = R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$$

which is required to be $3 \sin \theta + 7 \cos \theta$

 $\therefore R \cos \alpha = 3$ and $R \sin \alpha = 7$

Solving these two equations simultaneously by division,

$$\frac{R\sin\alpha}{R\cos\alpha} = \frac{7}{3}$$
$$\alpha = \arctan\left(\frac{7}{3}\right)$$

 $\alpha~=~66.8^{\circ}$

For reasons to be explained shortly,

$$R = \sqrt{7^2 + 3^2} = 7.62$$

Conclusion :

 $3\sin\theta + 7\cos\theta = 7.62\sin(\theta + 66.8^\circ)$

7.2 Why applying Pythagoras' theorem gives the value of R

$$\sqrt{(R \sin \alpha)^2 + (R \cos \alpha)^2} = \sqrt{R^2 \sin^2 \alpha + R^2 \cos^2 \alpha}$$
$$= \sqrt{R^2 (\sin^2 \alpha + \cos^2 \alpha)}$$
$$= \sqrt{R^2} \quad because \quad \cos^2 \alpha + \sin^2 \alpha = 1$$
$$= R$$

7.3 Example

Write $8 \sin \theta + 15 \cos \theta$ in the form $R \sin(\theta + \alpha)$ for $0 < \alpha < 90^{\circ}$

Teaching Video : <u>http://www.NumberWonder.co.uk/v9040/7.mp4</u>

After watching the Teaching Video, write out a solution in the space below,

F

7.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

(i) Write $2\sin\theta + \sqrt{5}\cos\theta$ in the form $R\sin(\theta + \alpha)$ for $0 < \alpha < 90^{\circ}$

[4 marks]

(ii) Keeping in mind that the maximum that $sin(\theta + \alpha)$ can be, regardless of α , is 1, what is the maximum value of $2 sin \theta + \sqrt{5} cos \theta$?

[1 mark]

(iii) Keeping in mind that the minimum that $sin(\theta + \alpha)$ can be, regardless of α , is - 1, what is the minimum value of $2 sin \theta + \sqrt{5} cos \theta$?

[1 mark]

(iv) Solve the equation $2 \sin \theta + \sqrt{5} \cos \theta = 1.5$ Give both solutions that are in the interval $0^\circ < \theta < 360^\circ$

[4 marks]

Question 2

(i) Write $\sqrt{3} \sin \theta + \cos \theta$ in the form $R \sin(\theta + \alpha)$ for $0 < \alpha < 90^{\circ}$

[4 marks]

(ii) What is the minimum value of $\sqrt{3} \sin \theta + \cos \theta$?

[1 mark]

(iii) What is the maximum value of $3\sin\theta + \sqrt{3}\cos\theta$?

[1 mark]

(iv) Solve the equation $\sqrt{3} \sin \theta + \cos \theta = \sqrt{2}$ Give both solutions that are in the interval $0^\circ < \theta < 360^\circ$

[4 marks]

Question 3

(i) Write $\sin \theta + \cos \theta$ in the form $R \sin(\theta + \alpha)$ for $0 < \alpha < 90^{\circ}$

[3 marks]

(ii) What is the minimum value of $\sin \theta + \cos \theta$?

[1 mark]

(iii) What is the exact maximum value of
$$\frac{1}{\sin\theta + \cos\theta + 3}$$
?

[2 mark]

(iv) Solve the equation $\sin \theta + \cos \theta = 1$ over the interval $0 \le \theta \le 360^\circ$ giving all solutions as exact values.

Question 4

Find a formula for α in terms of *A* and *B* when *A* sin θ + *B* cos θ is written in the form $R \sin(\theta + \alpha)$ for $0 < \alpha < 90^{\circ}$

[3 marks]

Question 5

(i) Expand the brackets; $cos(\theta + \alpha)$

[1 mark]

(ii) Write $9 \cos \theta - 12 \sin \theta$ in the form $R \cos (\theta + \alpha)$ for $0 < \alpha < 90^{\circ}$ Give α accurate to three significant figures.

[3 marks]

(iii) Solve the equation $9 \cos \theta - 12 \sin \theta = 15$ for $0 < \theta < 360^{\circ}$

[3 marks]