Lesson 8

A-Level Pure Mathematics : Year 2 Trigonometric Identities

8.1 Waveforms Expressed as *R* sin ($\theta \pm \alpha$) or *R* cos ($\theta \pm \alpha$)

In lesson 7 we looked at rewriting expressions of the form

$$a \sin \theta + b \cos \theta$$

as

$$R\sin(\theta + \alpha)$$

This is one of four possible variations on the same theme.

Here are all four rewrites, given that *a* and *b* are positive valued;

	• a sin	$i\theta \pm b$	$\cos\theta \equiv R\sin\theta$	$(\theta \pm \alpha)$)
	• $a\cos\theta \pm b\sin\theta \equiv R\cos(\theta \mp \alpha)$				
with $R > 0$ and $0 < \alpha < 90^{\circ}$					
where	$R\cos\alpha = a$	and	$R\sin\alpha = b$	and	$R = \sqrt{a^2 + b^2}$

The recommended method of tackling problems involving such rewrites is to, as we did in lesson 7, use the addition formula to expand whichever of $sin (\theta \pm \alpha)$ or $cos (\theta \mp \alpha)$ is desired, then equate coefficients of $sin \theta$ and $cos \theta$.

8.2 Example

Express $4\cos\theta + 3\sin\theta$ in the form $R\cos(\theta - \alpha)$ for R > 0 and $0 < \alpha < 90^{\circ}$

Teaching Video : http://www.NumberWonder.co.uk/v9040/8.mp4

After watching the video write out a solution to the example

F

[4 marks]

Note : Rearranging the expression as $3 \sin \theta + 4 \cos \theta$ gives rise to a rewrite of $5 \sin (\theta + 53.1^{\circ})$. The two answers are equivalent because $\cos \varphi = \sin (\varphi + 90^{\circ})$

8.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

(i) Express $15 \cos \theta + 36 \sin \theta$ in the form $R \cos(\theta - \alpha)$ where R > 0 and $0 < \alpha < 90^{\circ}$

[3 marks]

(ii) Hence solve, for $0 < \theta < 360^{\circ}$, the equation $15 \cos \theta + 36 \sin \theta = 13$

[3 marks]

Question 2

C3 Examination Question from January 2006, Q6

 $f(x) = 12\cos x - 4\sin x$

Given that $f(x) = R\cos(x + \alpha)$, where $R \ge 0$ and $0 \le \alpha \le 90^{\circ}$

(**a**) find the value of R and the value of α

[4 marks]

(**b**) Hence solve the equation
$$12 \cos x - 4 \sin x = 7$$

for $0 \le x \le 360^\circ$, giving your answer to one decimal place.

[5 marks]

(c) (i) Write down the minimum value of $12 \cos x - 4 \sin x$

[1 mark]

(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.

[2 marks]

Question 3

C3 Examination Question from January 2009, Q8

(a) Express $3\cos\theta + 4\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < 90^{\circ}$

[4 marks]

(**b**) Hence find the maximum value of $3\cos\theta + 4\sin\theta$ and the smallest positive value of θ for which this maximum occurs.

[3 marks]

The temperature, f(t), of a warehouse is modelled using the equation

$$f(t) = 10 + 3\cos(15t) + 4\sin(15t)$$

where *t* is the time in hours from midday and $0 \le t < 24$

(c) Calculate the minimum temperature of the warehouse as given by this model.

[2 marks]

(**d**) Find the value of t when this minimum temperature occurs.

[3 marks]

Question 4

(**a**) Express

$$5\sin^2\theta - 3\cos^2\theta + 6\sin\theta\cos\theta$$

in the form

 $a \sin 2\theta + b \cos 2\theta + c$

where *a*, *b* and *c* are constants to be found.

[3 marks]

(**b**) Hence find the maximum and minimum values of $5 \sin^2 \theta - 3 \cos^2 \theta + 6 \sin \theta \cos \theta$ (c) Solve $5\sin^2 \theta - 3\cos^2 \theta + 6\sin \theta \cos \theta = -1$ for $0 \le \theta \le 180$, rounding your answers to 1 decimal place.

[4 marks]

This document is Licensed for use by staff and students at **Shrewsbury School, England** To obtain a Licence please visit www.NumberIsAll.com © 2020 Number Is All