Lesson 8

A-Level Pure Mathematics : Year 2
 Trigonometric Identities

8.1 Waveforms Expressed as $\boldsymbol{R} \sin (\theta \pm \alpha)$ or $\boldsymbol{R} \boldsymbol{\operatorname { c o s }}(\theta \pm \alpha)$

In lesson 7 we looked at rewriting expressions of the form

$$
a \sin \theta+b \cos \theta
$$

as

$$
R \sin (\theta+\alpha)
$$

This is one of four possible variations on the same theme.

Here are all four rewrites, given that a and b are positive valued;

- $\quad a \sin \theta \pm b \cos \theta \equiv R \sin (\theta \pm \alpha)$
- $\quad a \cos \theta \pm b \sin \theta \equiv R \cos (\theta \mp \alpha)$
with $R>0$ and $0<\alpha<90^{\circ}$
where $\quad R \cos \alpha=a \quad$ and $\quad R \sin \alpha=b \quad$ and $\quad R=\sqrt{a^{2}+b^{2}}$

The recommended method of tackling problems involving such rewrites is to, as we did in lesson 7 , use the addition formula to expand whichever of $\sin (\theta \pm \alpha)$ or $\cos (\theta \mp \alpha)$ is desired, then equate coefficients of $\sin \theta$ and $\cos \theta$.

8.2 Example

Express $4 \cos \theta+3 \sin \theta$ in the form $R \cos (\theta-\alpha)$ for $R>0$ and $0<\alpha<90^{\circ}$

Teaching Video : http://www.NumberWonder.co.uk/v9040/8.mp4

After watching the video write out a solution to the example

42

Note : Rearranging the expression as $3 \sin \theta+4 \cos \theta$ gives rise to a rewrite of $5 \sin \left(\theta+53.1^{\circ}\right)$. The two answers are equivalent because $\cos \varphi=\sin \left(\varphi+90^{\circ}\right)$

8.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available $: 40$

Question 1

(i) Express $15 \cos \theta+36 \sin \theta$ in the form $R \cos (\theta-\alpha)$
where $R>0$ and $0<\alpha<90^{\circ}$
(ii) Hence solve, for $0<\theta<360^{\circ}$, the equation $15 \cos \theta+36 \sin \theta=13$

Question 2

C3 Examination Question from January 2006, Q6

$$
f(x)=12 \cos x-4 \sin x
$$

Given that $f(x)=R \cos (x+\alpha)$, where $R \geqslant 0$ and $0 \leqslant \alpha \leqslant 90^{\circ}$
(a) find the value of R and the value of α
(b) Hence solve the equation $12 \cos x-4 \sin x=7$ for $0 \leqslant x \leqslant 360^{\circ}$, giving your answer to one decimal place.
(c) (i) Write down the minimum value of $12 \cos x-4 \sin x$
(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.

Question 3

C3 Examination Question from January 2009, Q8
(a) Express $3 \cos \theta+4 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where R and α are constants, $R>0$ and $0<\alpha<90^{\circ}$
[4 marks]
(b) Hence find the maximum value of $3 \cos \theta+4 \sin \theta$ and the smallest positive value of θ for which this maximum occurs.
[3 marks]

The temperature, $f(t)$, of a warehouse is modelled using the equation

$$
f(t)=10+3 \cos (15 t)+4 \sin (15 t)
$$

where t is the time in hours from midday and $0 \leqslant t<24$
(c) Calculate the minimum temperature of the warehouse as given by this model.
(d) Find the value of t when this minimum temperature occurs.

Question 4

(a) Express

$$
5 \sin ^{2} \theta-3 \cos ^{2} \theta+6 \sin \theta \cos \theta
$$

in the form

$$
a \sin 2 \theta+b \cos 2 \theta+c
$$

where a, b and c are constants to be found.
[3 marks]
(b) Hence find the maximum and minimum values of

$$
5 \sin ^{2} \theta-3 \cos ^{2} \theta+6 \sin \theta \cos \theta
$$

(c) Solve $5 \sin ^{2} \theta-3 \cos ^{2} \theta+6 \sin \theta \cos \theta=-1$
for $0 \leqslant \theta \leqslant 180$, rounding your answers to 1 decimal place.
[4 marks]

