2.1 The Modulus Function (Part 1)

$|x|$ means "magnitude of x " although mathematicians also say "modulus of x ".

When the modulus function applies to a positive quantity is leaves it alone.
When applied to a negative quantity it makes it positive.
For example,

$$
\begin{aligned}
|45| & =45 \\
|-62| & =62
\end{aligned}
$$

2.2 Modulus Sketching Rule 1

To sketch $\boldsymbol{y}=|\boldsymbol{f}(\boldsymbol{x})|$
Bounce negative \boldsymbol{x}
$\diamond \quad$ Sketch $y=f(x)$ using a dashed line for points below the x-axis.
$\diamond \quad$ Reflect any part of the curve below the x-axis in the x-axis.

2.3 Example

Sketch the curve,
(i) $y=x^{2}-4$
(ii) $y=\left|x^{2}-4\right|$

2.4 Solving Modulus Equations: An Example

The graph is of the function, $f(x)=\left|x^{2}-10\right|, \quad x \in \mathbb{R}$

(i) From the graph, write down all the solutions to the equation $f(x)=6$
[2 marks]
(ii) Obtain the part (i) solutions using algebra.
(iii) To the graph add a plot of the function $g(x)=x+10$
(iv) Estimate, graphically, the solutions to the equation;

$$
f(x)=g(x)
$$

That is, $\quad\left|x^{2}-10\right|=x+10$
(v) Solve the equation $f(x)=g(x)$ using algebra.

[4 marks]

2.5 Watch Out !

Extraneous Solutions

When solving modulus equations it is possible to generate extra solutions and so a check that each solution satisfies the original equation is always advised.

2.6 Exercise

> Any solution based entirely on graphical
> or numerical methods is not acceptable
> Marks Available: 40

Question 1

Solve these equations,
(i) $\quad|x-4|=3, \quad x \in \mathbb{R}$
(ii) $\quad|x-7|=15, \quad x \in \mathbb{R}$
(iii) $\quad|9-x|=2, \quad x \in \mathbb{R}$

Question 2

(i) Sketch the graph of $y=|\sin x| \quad x \in \mathbb{R}, \quad 0^{\circ} \leqslant x \leqslant 360^{\circ}$
(ii) Hence, or otherwise, solve the equation;

$$
|\sin x|=0.5, \quad x \in \mathbb{R}, \quad 0^{\circ} \leqslant x \leqslant 360^{\circ}
$$

Question 3

A function f is defined by;

$$
f: x \rightarrow|x-2|-3, \quad x \in \mathbb{R}
$$

Solve the equation, $f(x)=1$

Question 4

Find the exact values of x for which ;

$$
\left|\frac{2}{x-3}\right|=3
$$

Question 5

Solve the equation;

$$
2-|x+1|=\frac{1}{2} x
$$

Question 6

Find the exact solutions of the equation;

$$
4-x^{2}=|2 x-1|
$$

Question 7

Solve the equation;

$$
||x-4|-2|=1
$$

Question 8

(i) Explain why the graph of a function of the form

$$
y=f(|x|)
$$

has mirror symmetry in the y-axis.
(ii) Sketch the graph of;

$$
y=\sin (|x|) \quad x \in \mathbb{R}, \quad-360^{\circ} \leqslant x \leqslant 360^{\circ}
$$

(iii) Hence, or otherwise, write down the solutions to the equation;

$$
\sin (|x|)=\frac{\sqrt{3}}{2} \quad x \in \mathbb{R}, \quad-360^{\circ} \leqslant x \leqslant 360^{\circ}
$$

Question 9

Solve the equation;

$$
\left|x^{2}-\pi\right|=x+\pi
$$

