3E. 1 Rational Functions and Asymptotes

The asymptotes of rational functions can be of three types; horizontal, vertical or oblique. Behind the scenes, as with differentiation, the theory of limits is at play. However, as with differentiation, a set of straight forward rules finds the asymptotes without having to battle through tedious technicalities.

Definition : A Rational Function...

...is of the form $\frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomials.

In such functions the degree of the two polynomials, $P(x)$ and $Q(x)$ is of crucial importance when determining the asymptotes.
With each polynomial arranged with the powers of x in decreasing order the leading term is then the first term.
The coefficient of the leading term of $P(x)$ is p
The coefficient of the leading term of $Q(x)$ is q

$$
\begin{aligned}
& \text { That is, } \quad P(x)=p x^{d e g(P(x))}+\text { other lower power terms } \\
& Q(x)=q x^{\operatorname{deg}(Q(x))}+\text { other lower power terms }
\end{aligned}
$$

Test for Horizontal Asymptotes

Compare the degree of the numerator $P(x)$ with that of the denominator $Q(x)$;
If $\operatorname{deg}(P(x))>\operatorname{deg}(Q(x))$ then there is no horizontal asymptote.
If $\operatorname{deg}(P(x))=\operatorname{deg}(Q(x))$ then $y=\frac{p}{q}$ is a horizontal asymptote.
If $\operatorname{deg}(P(x))<\operatorname{deg}(Q(x))$ then the x-axis is a horizontal asymptote.

Test for Vertical Asymptotes

Set the denominator, $Q(x)$, equal to zero and solve.
The solutions are the equations of vertical asymptotes.
(Unless the numerator has an identical solution in which case there is a point hole in the curve for that value of x)

Test for Oblique Asymptotes

If $\operatorname{deg}(P(x))-\operatorname{deg}(Q(x))=1$ then there exists an oblique asymptote.
Polynomial division of $P(x)$ by $Q(x)$ gives its equation.
(Any remainder from the division is ignored)

3E. 2 Example

Find all asymptotes to the curve, $y=\frac{x^{2}-x-6}{x-4}$
Once found, carefully add them to the graph of the curve presented below.

A full solution is presented on the following page.

3E. 3 Solution

$$
\begin{array}{r}
P(x)=x^{2}-x-6: \operatorname{deg}(P(x))=2 \\
Q(x)=x-4: \operatorname{deg}(Q(x))=1
\end{array}
$$

Testing for horizontal asymptotes;
As $\operatorname{deg}(P(x))>\operatorname{deg}(Q(x))$ there is no horizontal asymptote.
Testing for vertical asymptotes;

$$
\begin{aligned}
Q(x) & =0 \\
x-4 & =0 \\
x & =4
\end{aligned}
$$

There is a vertical asymptote with equation, $x=4$

Testing for oblique asymptotes;
As $\operatorname{deg}(P(x))-\operatorname{deg}(Q(x))=1$ there exists an oblique asymptote.

$$
\begin{array}{r}
x + 4 \longdiv { x } \begin{array} { r }
{ x ^ { 2 } - x - 6 } \\
{ x ^ { 2 } - 4 x } \\
{ } \\
{ \frac { 3 x - 6 } { 3 x - 1 2 } } \\
{ \frac { 6 } { 3 x } }
\end{array} \leftarrow \text { Ignore ! }
\end{array}
$$

There is an oblique asymptote with equation $y=x+3$

3E. 4 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available: 18

Question 1

Find all asymptotes to the curve, $y=\frac{2 x^{2}-6 x-1}{x-1}$
Once found, carefully add them to the graph of the curve presented below.

Question 2

Find all asymptotes to the curve, $y=\frac{7 x^{2}-9}{3 x^{2}-10}$
Once found, carefully add them to the graph of the curve presented below.

Question 3

Find all asymptotes to the curve, $y=\frac{x^{3}-x^{2}-8}{2 x^{2}-8}$
Once found, carefully add them to the graph of the curve presented below.

