Lesson 4

A-Level Pure Mathematics, Year 2

Functions II

4.1 The Modulus Function (Part 2)

The fact that the modulus function can take any part of an equation's graph that is below the x-axis, and reflects it in the x-axis was studied previously. Here is the rule that was used;

Modulus Sketching Rule 1

To sketch $y=|f(x)|$

Bounce negative x

$\diamond \quad$ Sketch $y=f(x)$ using a dashed line for points below the x-axis.
$\diamond \quad$ Reflect any part of the curve below the x-axis in the x-axis.

For example, graph A shows the parabola with quadratic equation $y=x^{2}-4 x+3$ and graph B shows the effect of modulising graph A : That is, $y=\left|x^{2}-4 x+3\right|$

4.1.1 Example

Find the equation that will yield graph C, where the "bounce" is against the y-axis.

4.2 By Hand

Faced with an unfamiliar modulus question it may be best to go back to basics by drawing up a table and plotting points to get a feel of how it is behaving. With such plotting, keeping one's wits sharp is essential !

4.2.1 Example

Use the table below to assist in plotting the following equation;

$$
|y+1|=\left|(x-2)^{2}\right|
$$

x	-3	-2	-1	0	1	2	3	4	5	6	7
y											

4.3 A Subtle Variation

Typically, an examination question will ask for two separate graphs of
$\diamond \quad y=|f(x)|$
and $\quad \diamond \quad y=f(|x|)$

Modulus Sketching Rule 2

To sketch $y=f(|x|)$

Overwrite negative \boldsymbol{x}

$\diamond \quad$ Sketch the curve of $y=f(x)$ for $x \geqslant 0$
$\diamond \quad$ Reflect the parts of the curve to the right of the y-axis in the y-axis.

Graph D shows the parabola with quadratic equation $y=x^{2}-4 x+3$ and graph E shows the effect of modulising each individual x. That is, $y=\left|x^{2}\right|-4|x|+3$ Notice that the information to the left of the y-axis of the original graph has been overwritten, whilst information to the right has been "duplicated" in a reflected form.

4.3.1 Example

Find the equation that will yield graph F, where the "mirror" is in the x-axis.

4.4 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable
> Marks Available: 100

Question 1

A-Level Examination Question from June 2012, paper C3, Q4(a)(b) (Edexcel)

The curve $y=f(x)$ passes through the points $P(-1.5,0)$ and $Q(0,5)$ as shown. On separate diagrams, sketch the curve with equation,
(a) $y=|f(x)|$
(b) $y=f(|x|)$

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.

Question 2

The diagram shows the graph of $y=f(x)$
The point $(1,5)$ is the maximum turning point of the graph.
The point $(-5,1)$ is the minimum turning point of the graph.
Sketch, on separate diagrams, the graphs of
(i) $y=|f(x)|$
(ii) $y=f(|x|)$

Show on each graph the coordinates of any turning points.

Question 3

$$
h(x)=2(x-3)^{2}-8, \quad x \in \mathbb{R}
$$

(a) For each of the following, draw a sketch.
Label any turning points and axes intercepts.
(i) $y=h(x)$
(ii) $\quad y=|h(x)|$
(iii) $y=h(|x|)$
(b) For what values of k will the equation $h(|x|)=k$ have four solutions?

Question 4

A-Level Mock Paper 2 from 2019, Q5 (Edexcel)

The graph is part of the equation $y=f(x)$ where $f(x)=7-|3 x-5|, x \in \mathbb{R}$ The finite region R, shown shaded, is bounded by the graph $y=f(x)$ and the x-axis.
(a) Find the area of R, giving your answer in its simplest form.

The equation $7-|3 x-5|=k$ where k is a constant has two distinct real solutions.
(b) Write down the range of possible values for k

Question 5

(i) Use the table below to assist in plotting the following equation;

$$
|y-3|=|x-2|
$$

x	-3	-2	-1	0	1	2	3	4	5	6	7
y											

(ii) Given that the following equation has exactly one real solution, find k;

$$
|y-3|-|x-2|=k
$$

[1 mark]
(iii) Given that the following equation has exactly one real solution, find c;

$$
|y-3|-|x-2|=\frac{1}{4} x+c
$$

Question 6

$$
f(x)=|x|^{2}-4|x|+1 \quad x \in \mathbb{R}
$$

(a) Given that x is a real number, which of the following are true ?
(i) $\quad|x|^{2}=x^{2}$
(ii) $\left|x^{2}\right|=x^{2}$
(iii) $\quad\left|x^{2}\right|=|x|^{2}$
(b) Sketch the curve, $y=f(x)$, marking on the coordinates of any local minima or maxima.
(c) Using algebra, solve the equation, $f(x)=-2$
(d) If $f(x)=k$, where k is a constant, has exactly two solutions, state the possible values of k

Question 7

A-Level Sample Assessment Materials from 2017, Paper 2, Q11 (Edexcel)

The graph is a sketch of $y=f(x)$ where $f(x)=2|3-x|+5, x \geqslant 0$
(a) State the range of f
[1 mark]
(b) Solve the equation, $f(x)=\frac{1}{2} x+30$

Given that the equation $f(x)=k$, where k is a constant, has two distinct roots, (c) state the set of possible values for k

Question 8

A circle centre $(3,2)$ and radius 5 has equation $(x-3)^{2}+(y-2)^{2}=25$ This equation has been manipulated in various ways and the modulus function applied to obtain the following graphs on a computer capable of processing the \pm sign in an input equation.
Underneath each graph write the equation used to produce the graph.
(i)

[3 marks]
(ii)

(iii)

(iv)

If you have a graphics calculator you may like to see if you can get it to plot each of these curves. Where $a \pm$ is involved you may have to plot the equation with the plus separately to the equation with a minus.

Question 9

$$
f(x)=3 x^{2}-12 x+7, \quad x \in \mathbb{R}
$$

(a) Write $f(x)$ in the form $a(x+b)^{2}+c$, where a, b and c are integers.
(b) Sketch the curve with equation $y=f(x)$ showing any points of intersection with the coordinate axes and the coordinates of any turning point.
(c) (i) Describe fully the transformation that maps the curve with equation $y=f(x)$ onto the curve with equation $y=g(x)$ where,

$$
g(x)=3(x-1)^{2}-12 x+9, \quad x \in \mathbb{R}
$$

(ii) Find the range of the function

$$
h(x)=\frac{20}{3 x^{2}-12 x+7} \quad x \in \mathbb{R}
$$

Question 10

A-Level Examination Question from January 2014, Paper C3, Q6 (Edexcel) Given that a and b are constants and that $0<a<b$,
(a) on separate diagrams, sketch the graph with equation
(i) $y=|2 x+a|$
(ii)
$y=|2 x+a|-b$

Show on each sketch the coordinates of each point at which the graph crosses or meets the axes.
(b) Solve, for x, the equation

$$
|2 x+a|-b=\frac{1}{3} x
$$

giving any answers in terms of a and b

Question 11

The functions f and g are defined as,

$$
\begin{array}{ll}
f(x)=4 a^{2}-x^{2}, & x \in \mathbb{R} \\
g(x)=|4 x-a|, & x \in \mathbb{R}
\end{array}
$$

where a is a constant, such that $a \geqslant 1$
(i) Sketch the graph of $f(x)$ and the graph of $g(x)$ on the same diagram. The sketch must include the coordinates of any points where each of the graphs meets the coordinate axes.
[6 marks]
(ii) Find, in exact form where appropriate, the solutions of the equation,

$$
4-x^{2}=|4 x-1|
$$

Question 12

Consider the function

$$
f(x)=\frac{\pi}{180} x-5+\sin x, \quad-300^{\circ} \leqslant x \leqslant 600
$$

(a) Complete the following table,

x	-300	-240	-180	-120	-60	0	60	120
y								

x	180	240	300	360	420	480	540	600
y								

[3 marks]
(b) (i) On the grid below plot the graph of $y=f(x)$

(ii) On the grid below plot the graph of $y=|f(x)|$

[2 marks]
(iii) On the grid below plot the graph of $y=f(|x|)$

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

