Lesson 5

A-Level Pure Mathematics, Year 2 Functions II

Replace all occurrences of	with	Effect on graph (Transformation)
x	(x-a)	Translation $\begin{pmatrix} a \\ 0 \end{pmatrix}$
у	(y - b)	Translation $\begin{pmatrix} 0\\b \end{pmatrix}$
x	(<i>-x</i>)	Reflection in the <i>y</i> -axis
у	(- y)	Reflection in the <i>x</i> -axis
x	(<i>cx</i>)	Stretch parallel to the x-axis with scale factor $\frac{1}{c}$
у	(<i>dy</i>)	Stretch parallel to the <i>y</i> -axis with scale factor $\frac{1}{d}$

5.1 Transformation Of Graphs (Part 2)

- \diamond Replacing all occurrences of x with y AND all occurrences of y with x causes reflection in the line y = x.
- \diamond Reflecting the graph of a one-to-one function in the line y = x gives the graph of the inverse function.

5.2 Example #1

If $f(x) = a^x$ then $f^{-1}(x) = \log_a x$, x > 0When plotted on a common graph each is a reflection of the other in the line y = x

5.3 Example #2

Sketch on separate diagrams the graph of the following four related equations, each time, stating the range of the corresponding function.

(i)
$$y = (x - 3)^2 - 4$$
 (ii) $y = |(x - 3)^2 - 4|$

(iii)
$$y + 2 = |(x - 3)^2 - 4|$$
 (iv) $2 - y = |(x - 3)^2 - 4|$

5.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available: 46

Question 1

Paying attention to where the three turning points lie, sketch the related curves, (i) $y = |x^4 - 32x^2|$ (ii) $y = |(x - 2)^4 - 32(x - 2)^2| + 32$

The graph of a function, $y = f(x), x \in \mathbb{R}$, consists of two line segments that meet at the point R(4, -3)

Sketch, on two separate diagrams, the graphs of,

 $(a) \quad y = 2f(x+4)$

(**b**)
$$y = |f(-x)|$$

On each graph, show the coordinates of the point corresponding to R

The graph of a function, y = f(x), $x \in \mathbb{R}$, has two turning points. One is at P(-3, 0) and the other is at Q(2, -4)

Sketch, on two separate diagrams, the graphs of,

(a) y = 3f(x + 2)

(**b**)
$$y = |f(x)|$$

On each graph, show the coordinates of any turning points.

The graph of a function, y = f(x), passes through P(0, -2) and Q(3, 0)Furthermore, f(x) is an increasing function.

Sketch, on three separate diagrams, the graphs of,

(**a**)
$$y = |f(x)|$$

(**b**) $y = f^{-1}(x)$
(**c**) $y = \frac{1}{2}f(3x)$

On each graph, show the coordinates of points where contact is made with axes.

The graph of a function, y = f(x), $x \in \mathbb{R}$, intercepts the y-axis at (0, 1) and has a local maximum at A(2, 3), as shown.

Sketch, on three separate diagrams, the graphs of,

$$(a) \quad y = f(-x) + 1$$

$$(\mathbf{b})$$
 $y = f(x + 2) + 3$

 $(c) \quad y = 2f(2x)$

On each sketch, show the coordinates of the point at which it intersects the *y*-axis and the coordinates of the point to which *A* is transformed.

The diagram shows part of the graph of $y = f(x), x \in \mathbb{R}$

The graph consists of two line segments that meet at the point (1, a), a < 0One line meets the *x*-axis at (3, 0)

The other line meets the x-axis at (-1, 0) and the y-axis at (0, b), b < 0

In separate diagrams, sketch the graph with equation,

 $(a) \quad y = f(x+1)$

 $(\mathbf{b}) \quad y = f(|x|)$

Indicate on each sketch the coordinates of any points of intersection with the axes.

Given that

$$f(x) = |x - 1| - 2$$

find

(c) the value of a and the value of b

[2 marks]

(d) the value of x for which f(x) = 5x

[4 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk