Lesson 5

A-Level Pure Mathematics, Year 2

Functions II

5.1 Transformation Of Graphs (Part 2)

Replace all occurrences of...	...with	Effect on graph (Transformation)
x	$(x-a)$	Translation $\binom{a}{0}$
y	$(y-b)$	Translation $\binom{0}{b}$
x	$(-x)$	Reflection in the y-axis
y	$(-y)$	Reflection in the x-axis
x	$(c x)$	Stretch parallel to the x-axis with scale factor $\frac{1}{c}$
y	$(d y)$	Stretch parallel to the y-axis with scale factor $\frac{1}{d}$

$\diamond \quad$ Replacing all occurrences of x with y AND all occurrences of y with x causes reflection in the line $y=x$.
$\diamond \quad$ Reflecting the graph of a one-to-one function in the line $y=x$ gives the graph of the inverse function.

5.2 Example \#1

If $f(x)=a^{x}$ then $f^{-1}(x)=\log _{a} x, \quad x>0$
When plotted on a common graph each is a reflection of the other in the line $y=x$

5.3 Example \#2

Sketch on separate diagrams the graph of the following four related equations, each time, stating the range of the corresponding function.
(i) $\quad y=(x-3)^{2}-4$
(ii) $\quad y=\left|(x-3)^{2}-4\right|$
(iii) $\quad y+2=\left|(x-3)^{2}-4\right| \quad$ (iv) $\quad 2-y=\left|(x-3)^{2}-4\right|$

5.4 Exercise

$$
\begin{gathered}
\text { Any solution based entirely on graphical } \\
\text { or numerical methods is not acceptable } \\
\text { Marks Available: } 46
\end{gathered}
$$

Question 1

The function $y=x^{4}-32 x^{2}$ is graphed below.

Paying attention to where the three turning points lie, sketch the related curves,
(i) $y=\left|x^{4}-32 x^{2}\right|$
(ii) $\quad y=\left|(x-2)^{4}-32(x-2)^{2}\right|+32$

Question 2

The graph of a function, $y=f(x), x \in \mathbb{R}$, consists of two line segments that meet at the point $R(4,-3)$

Sketch, on two separate diagrams, the graphs of,
(a) $y=2 f(x+4)$
(b) $y=|f(-x)|$

On each graph, show the coordinates of the point corresponding to R

Question 3

The graph of a function, $y=f(x), x \in \mathbb{R}$, has two turning points.
One is at $P(-3,0)$ and the other is at $Q(2,-4)$

Sketch, on two separate diagrams, the graphs of,
(a) $y=3 f(x+2)$
(b) $y=|f(x)|$

On each graph, show the coordinates of any turning points.

Question 4

The graph of a function, $y=f(x)$, passes through $P(0,-2)$ and $Q(3,0)$ Furthermore, $f(x)$ is an increasing function.

Sketch, on three separate diagrams, the graphs of,
(a) $y=|f(x)|$
(b) $y=f^{-1}(x)$
(c) $y=\frac{1}{2} f(3 x)$

On each graph, show the coordinates of points where contact is made with axes.

Question 5

The graph of a function, $y=f(x), x \in \mathbb{R}$, intercepts the y-axis at $(0,1)$ and has a local maximum at $A(2,3)$, as shown.

Sketch, on three separate diagrams, the graphs of,
(a) $y=f(-x)+1$
(b) $y=f(x+2)+3$
(c) $y=2 f(2 x)$

On each sketch, show the coordinates of the point at which it intersects the y-axis and the coordinates of the point to which A is transformed.

Question 6

The diagram shows part of the graph of $y=f(x), x \in \mathbb{R}$

The graph consists of two line segments that meet at the point ($1, a$), $a<0$ One line meets the x-axis at (3,0)

The other line meets the x-axis at $(-1,0)$ and the y-axis at $(0, b), b<0$

In separate diagrams, sketch the graph with equation,
(a) $y=f(x+1)$
(b) $y=f(|x|)$

Indicate on each sketch the coordinates of any points of intersection with the axes.

Given that

$$
f(x)=|x-1|-2
$$

find
(c) the value of a and the value of b
(d) the value of x for which $f(x)=5 x$

It may be freely duplicated and distributed, unaltered, for non-profit educational use

