Lesson 6

A-Level Pure Mathematics, Year 2 Functions II

6.1 Composite Functions

The topic of Composite Functions is covered at GCSE.

At that level, the emphasis is on numerical problems, with the algebraic treatment kept simple and straightforward. For A Level, the emphasis is on the algebra along with concern about domains and ranges.

Keep in mind that fg(x) means *eff the already gee'd x*

6.2 Example

Let *s* and *t* be the functions

$$s(x) = (x+1)^2 \qquad x \in \mathbb{R}$$

		t(x) = x - 2	<i>x</i> ∈	$\mathbb R$
(a)	Deterr	nine each of the following,		
	(i)	s t (8)	(ii)	t s (8)

(iii)
$$t s(x)$$
 (iv) $s t(x)$

[4 marks]

(**b**) Find the unique value of x such that

$$ts(x) = st(x)$$

[2 marks]

Notice that, in general, $st(x) \neq ts(x)$

6.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available: 60

Question 1

Given that, f(x) = 3x + 2, $x \in \mathbb{R}$ and g(x) = 5x - 4, $x \in \mathbb{R}$ Find an expression for gf(x) that does not contain any brackets.

[2 marks]

Question 2

Given that, f(x) = 7x - 5, $x \in \mathbb{R}$ and g(x) = 10 - x, $x \in \mathbb{R}$ Find an expression for fg(x) that does not contain any brackets.

[2 marks]

Question 3

Given that, $f(x) = x^2 + x$, $x \in \mathbb{R}$ and g(x) = x + 3, $x \in \mathbb{R}$ (i) Find an expression for fg(x) that does not contain any brackets.

[2 marks]

(ii) Find the two values of x such that, fg(x) = 0

[2 marks]

Given that, f(x) = 4x - 1, $x \in \mathbb{R}$ and $g(x) = x^2 + 1$, $x \in \mathbb{R}$ Determine the following, giving answers free of any brackets; (i) f(3) (ii) g(4)

(iii) fg(1) (iv) gf(2)

 $(\mathbf{v}) = fg(\mathbf{x})$

(vi) State the range of your part (v) composite function

[1, 1, 2, 2, 3, 1 marks]

Question 5

$$f(x) = \frac{12}{x+5} \qquad x \in \mathbb{R}, \ x \neq -5$$
$$g(x) = 6x - 5 \qquad x \in \mathbb{R}$$

Find a simplified expression for fg(x) that does not contain any brackets.

[2 marks]

	(iv)	ts (10)	(v)	st (3)	(vi)	ts(-1)	
(a)	(i)	s (5)	(ii)	<i>sss</i> (1)	(iii)	<i>ttt</i> (1)	
(9)	Deterr	nine	t(x) = x - 2,	$x \in \mathbb{R}$			
			$s(x) = x^2 + x,$	$x \in \mathbb{R}$			

[3 marks]

(**b**) Determine s t(x) writing your answer without any brackets.

[2 marks]

(**c**) Find the two values of x for which st(x) = 0

[2 marks]

$$f(x) = \sqrt{x} + 3 \qquad x \in \mathbb{R}, \ x \ge 0$$
$$g(x) = x + 2 \qquad x \in \mathbb{R}$$

(**i**) Find fg(x)

[2 marks]

(ii) State the domain of fg(x) given that it should be as large as possible

[1 mark]

(iii) State the corresponding range of fg(x)

[1 mark]

Question 8

$$f(x) = x^2 - 1 \qquad x \in \mathbb{R}$$

Solve the equation,

ff(x) = 0

[4 marks]

$$f(x) = x^{2} + 8 \qquad x \in \mathbb{R}$$
$$g(x) = 2x - 5 \qquad x \in \mathbb{R}$$

Solve the equation

$$fg(x) = gf(x)$$

giving your solutions as exact surds.

Let two functions, *m* and *n*, be;

(i)	<i>n</i> (64)			(ii)		m ((3)		
Determine each of the following, giving bracket free answers;									
	$n(x) = 100 - \sqrt{x}$	x	∈	\mathbb{R} ,	0	≼	x	≼	9820.81
	m(x) = 10x - 9,	x	∈	R,	x	≥	0.9	9	

$$(\mathbf{iii}) \quad mn(9) \qquad (\mathbf{iv}) \quad nm(9)$$

$$(\mathbf{v}) \quad mn(x) \qquad (\mathbf{vi}) \quad nm(x)$$

[8 marks]

(vii) Function *m* is only defined on domain $x \ge 0.9$ To see why, calculate m(0) then nm(0)

[2 marks]

(viii) Having had to restrict the domain of *m* so that *nm* exists, the domain of *n* has to then also be restricted so that its output can be fed into *m*. Calculate, *n*(9820.8) and explain why any input greater than the 9820.81 would cause a problem.

[2 marks]

Observation : fg, can be formed only if the range of g is a subset of the domain of f.

Let *m* and *n* be the functions;

$$m(x) = 9x - 5 \qquad x \in \mathbb{R}$$

$$n(x) = \sqrt{x - 7} \qquad x \in \mathbb{R}, \ x \ge 7,$$
Evaluate each of the following;
(i) $mn(8)$ (ii) $mn(56)$

(iii)
$$mn(z^2 + 7)$$
 (iv) $mn(4z^2 + 7)$

[8 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk