Lesson 8

A-Level Pure Mathematics, Year 2

Functions II

8.1 The Möbius Function

A Möbius function is of the form,

$$
f(x)=\frac{a x+b}{c x+d} \quad x \in \mathbb{R}, a d-b c \neq 0, \quad x \neq-\frac{d}{c}
$$

where a, b, c and d are constants.
Finding the inverse of this one-to-one function requires a method for dealing with the fact that the the x appears in two different places, in both numerator and denominator.

Example

(i) Find the inverse of,

$$
h(x)=\frac{5 x+2}{3 x+4} \quad x \in \mathbb{R}, \quad x \neq-\frac{4}{3}
$$

(ii) State the domain of the inverse function.

8.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available: 54

Question 1

(i) Find the inverse of, $m(x)=\frac{7 x+1}{2 x+3} \quad x \in \mathbb{R}, \quad x \neq-\frac{3}{2}$
(ii) State the domain of the inverse function

Question 2

Prove that the inverse of

$$
f(x)=\frac{a x+b}{c x+d} \quad x \in \mathbb{R}, a d-b c \neq 0, \quad x \neq-\frac{d}{c}
$$

where a, b, c and d are constants, is

$$
f^{-1}(x)=\frac{-d x+b}{c x-a} \quad x \in \mathbb{R}, \quad x \neq \frac{a}{c}
$$

Question 3

(i) Find the inverse of, $s(x)=\frac{2 x-1}{x-2} \quad x \neq 2$ by using the result proven in question 2
(ii) This is an example of a "self inverse" function.
Explain what this means.
[1 mark]
(iii) Plot an accurate graph of $s(x)$ and also the line $y=x$

Mark on the horizontal and the vertical asymptotes of $s(x)$

[3 marks]
(iv) What property do the graphs of all self-inverse functions have?

Question 4

(i) Write down the equations of the two asymptotes of the function,

$$
f(x)=\frac{2}{x} \quad x \in \mathbb{R}, \quad x \neq 0
$$

(ii) With your part (i) answer in mind, write down the equations of the two asymptotes of the graph of the function,

$$
h(x)=\frac{2}{x+1}+3
$$

(iii) What number must be excluded from the domain of $h(x)$?
[1 mark]
(iv) Sketch the graph of $h(x)$
(No need for an accurate graph, just the essential shape and the asymptotes)
(v) Show that $h(x)$ is a Möbius transformation by writing it in the form,

$$
f(x)=\frac{a x+b}{c x+d} \quad x \in \mathbb{R}, a d-b c \neq 0, \quad x \neq-\frac{d}{c}
$$

where a, b, c, and d are constants the values of which you have determined.
[3 marks]
(vi) Find $h^{-1}(x)$, stating its domain.

Question 5

A-Level Examination Question from November 2018, Paper C34, Q10 (Edexcel)

The sketch is of the graph with equation $y=g(x)$, where,

$$
g(x)=\frac{3 x-4}{x-3}, \quad x \in \mathbb{R}, x<3
$$

The graph cuts the x-axis at the point A and the y-axis at the point B, as shown.
(a) State the range of g
(b) State the coordinates of,
(i) point A
(ii) point B
(c) Find $g g(x)$ in its simplest form.
(d) Sketch the graph with equation $y=|g(x)|$

On your sketch, show the coordinates of each point at which the graph meets or cuts the axes and state the equation of each asymptote.
[3 marks]
(e) Find the exact solution of the equation $|g(x)|=8$

Question 6

$$
f(x)=|x-2|+1, x \in \mathbb{R}
$$

The function $f(x)$ has a "critical value" when $|x-2|=0$ in the sense that there will be a "drastic change" in the smoothness of the graph at $x=2$

This function can also be written in hybrid form as, $f(x)=\left\{\begin{array}{cl}x-1 & x \geqslant 2 \\ -x+3 & x<2\end{array}\right\}$
Consider now the following function,

$$
g(x)=|x+1|+|2 x+1|-|x-2|
$$

Determine the critical values of $g(x)$, sketch $g(x)$ and express $g(x)$ in hybrid form.

