Lesson 2

A-Level Pure Mathematics, Year 1
 Additional Mathematics
 Integration I

2.1 When Below the \boldsymbol{x}-axis

In Question 10 of Exercise 1.6 we looked at the curve

$$
y=(x+1)(x-5)
$$

The following two statements are both true;

$$
\begin{aligned}
& \diamond \quad \int_{-1}^{5}(x+1)(x-5) d x=-36 \\
& \diamond \quad \text { Area }=+36
\end{aligned}
$$

If a question asks for the value of an integral, simply do the mathematics without worrying about any places where the curve is below the x-axis, and give the answer without any alteration to its sign.

If a question asks for an area, you must make any areas under the x-axis positive, before summing all positive areas to give the overall area.

2.2 A "Negative Area" Example

Teaching Video : http://www.NumberWonder.co.uk/v9043/2.mp4

<= The video will talk through the example on the next page

Find the area bounded by $y=4-x^{2}$, the x-axis, and the lines $x=0$ and $x=3$

$$
\begin{aligned}
y & =4-x^{2} \\
& =(2+x)(2-x)
\end{aligned}
$$

So curve crosses x-axis at $x=-2$ and $x=2$
Also, it crosses y-axis at 4

$$
\begin{aligned}
\int_{0}^{2} 4-x^{2} d x & =\left[4 x-\frac{x^{3}}{3}\right]_{0}^{2} \\
& =\left[8-\frac{8}{3}\right]-[0] \\
& =\left[\frac{24-8}{3}\right]-[0] \\
& =\left[\frac{16}{3}\right]-[0] \\
& =\frac{16}{3}
\end{aligned}
$$

$$
\begin{aligned}
\int_{2}^{3} 4-x^{2} d x & =\left[4 x-\frac{x^{3}}{3}\right]_{2}^{3} \\
& =[12-9]-\left[\frac{16}{3}\right] \\
& =\left[\frac{9}{3}\right]-\left[\frac{16}{3}\right] \\
& =-\frac{7}{3}
\end{aligned}
$$

$$
\therefore \text { Area }=\frac{16+7}{3}=\frac{23}{3}=7 \frac{2}{3}
$$

2.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available :40

Question 1

The graph is of the quartic curve $y=x^{4}-5 x^{2}+4$

(i) Show that $\int_{1}^{2} y d x=-\frac{22}{15}$
(ii) Determine the exact value of $\int_{0}^{1} y d x$
(iii) Hence state the exact area that has been shaded on the graph

Question 2

The graph is of the cubic curve $y=x(x-2)(x-4)$

(i) Without considering the graph, determine the value of $\int_{0}^{4} y d x$
(ii) Now consider the graph.
From your part (i) answer what can you deduce about the relationship between the area shown shaded above the x-axis and the area shown shaded below the x-axis?

Question 3

Determine the value of $\int_{1}^{4} 6 x^{2}-5 x^{4} d x$
You should get a negative integer answer.

Question 4

(i) Find the value of the upper limit that makes the following statement true;

$$
\int_{1}^{a}(5-2 x) d x=0
$$

(ii) Give a geometric explanation of the part (i) result

Question 5

Additional Mathematics Examination Question from June 2012, Q8 (OCR)
(i) Show that $\int_{0}^{2} x^{2}+2 x-3 d x=\frac{2}{3}$

The diagram shows part of the curve $y=x^{2}+2 x-3$

(ii) Marc claims that the total area between the curve, the x-axis and the lines $x=0$ and $x=2$ is $\frac{2}{3}$. Explain why he is wrong.
(iii) Calculate the total area between curve, x-axis and lines $x=0$ and $x=2$

Question 6

This question is about using integration to find the area bounded by the curve $y=3 x-x^{2}$ and the x-axis and the vertical lines $x=0$ and $x=6$
(i) Sketch the graph of the curve and use your sketch to explain why

$$
\text { Area } \neq \int_{0}^{6} 3 x-x^{2} d x
$$

[4 marks]
(ii) Set up the correct integrations and evaluate them to find the area specified.

