6.1 The Constant Of Integration

Last lesson made use of the following rule,

Indefinite Integration Power Rule

$$
\text { If } y=x^{n} \text { then } \int y d x=\frac{x^{n+1}}{n+1}+c
$$

Proof

Let $f(x)=\frac{x^{n+1}}{n+1}+c \quad$ where c is a constant
in which case the derivative is given by,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(n+1) x^{n+1-1}}{n+1} \\
& =x^{n}
\end{aligned}
$$

As the derivative of $\frac{x^{n+1}}{n+1}+c$ is x^{n} then, by the fundamental theorem of calculus, the integral of x^{n} must be $\frac{x^{n+1}}{n+1}+c$

A logical question at this point would be to ask why c, often called "the constant of integration" was ignored when considering integrations with limits;

Definite Integration Power Rule

$$
\text { If } y=x^{n} \text { then } \int_{a}^{b} y d x=\left[\frac{x^{n+1}}{n+1}\right]_{a}^{b}
$$

Here is the answer :

$$
\begin{aligned}
{\left[\frac{x^{n+1}}{n+1}+c\right]_{a}^{b} } & =\left[\frac{b^{n+1}}{n+1}+c\right]-\left[\frac{a^{n+1}}{n+1}+c\right] \\
& =\left[\frac{b^{n+1}}{n+1}\right]+c-\left[\frac{a^{n+1}}{n+1}\right]-c \\
& =\left[\frac{x^{n+1}}{n+1}\right]_{a}^{b}
\end{aligned}
$$

6.2 Example

The gradient function of a curve is given by $\frac{d y}{d x}=12 x^{5}+3$
Find the equation of the curve given that it passes through the point (1,9)
Teaching Video : http://www.NumberWonder.co.uk/v9043/6.mp4

All these curves have gradient equation $\frac{d y}{d x}=12 x^{5}+3$ but only one passes through the point $(1,9)$

6.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Additional Mathematics Examination Question from June 2011, Q9 (OCR) The gradient function of a curve is given by;

$$
\frac{d y}{d x}=3 x^{2}-2 x+4
$$

Find the equation of the curve given that it passes through the point (2, 2)

Question 2

Additional Mathematics Examination Question from June 2018, Q2 (OCR) The gradient function of a curve is given by;

$$
\frac{d y}{d x}=2+2 x-3 x^{2}
$$

Find the equation of the curve given that it passes through the point $(2,3)$

Question 3

A-Level Examination Question from January 2012, Paper C1, Q7 (Edexcel) A curve with equation $y=f(x)$ passes through the point $(2,10)$
Given that

$$
f^{\prime}(x)=3 x^{2}-3 x+5
$$

find the value of $f(1)$
[5 marks]

Question 4

A-Level Examination Question from January 2018, Paper C12, Q1 (Edexcel)
Given that $y=\frac{2 x^{\frac{2}{3}}+3}{6}, x>0$ find, in the simplest form,
(a) $\frac{d y}{d x}$
(b) $\int y d x$

Question 5

A-Level Examination Question from January 2017, Paper C12, Q7(i) (Edexcel)
Find $\int \frac{2+4 x^{3}}{x^{2}} d x$ giving each term in its simplest form

Question 6

A-Level Examination Question from January 2013, Paper C1, Q8 (Edexcel)

$$
\frac{d y}{d x}=-x^{3}+\frac{4 x-5}{2 x^{3}}, \quad x \neq 0
$$

Given that $y=7$ at $x=1$, find y in terms of x, giving each term in its simplest form

Question 7

A-Level Examination Question from January 2014, Paper C1, Q9 (Edexcel)
A curve with equation $y=f(x)$ passes through the point $(3,6)$
Given that $f^{\prime}(x)=(x-2)(3 x+4)$
(a) use integration to find $f(x)$
Give your answer as a polynomial in its simplest form
(b) Show that $f(x)=(x-2)^{2}(x+p)$, where p is a positive constant. State the value of p
(c) Sketch the graph of $y=f(x)$, showing the coordinates of any points where the curve touches or crosses the coordinate axes.

