Trigonometry IV

Additional Mathematics
A-Level Pure Mathematics: Year 1
Equations and Identities

Art from the Trigonometric Equation

$$
\left(\frac{x}{2}\right) \sin \left(\frac{x}{2}\right)+\left(\frac{y}{2}\right) \sin \left(\frac{y}{2}\right)+8 \sin x \sin y=0
$$

Lesson 1

Additional Mathematics
A-Level Pure Mathematics : Year 1
Trigonometry IV

1.1 Graph Assisted Equation Solving

To solve equations that involve \sin , \cos and tan a calculator and, from memory, a sketch of the appropriate graph is required. Here are the graphs needed "in mind".

Teaching Video : http://www.NumberWonder.co.uk/v9044/1a.mp4

\leftarrow Watch the video which talks through these essential graphs

1.2 Example

The Question : Solve the equation $\cos x=-0.283 \quad 0^{\circ} \leqslant x \leqslant 360^{\circ}$

The Solution : It's tempting to start by using your calculator to get that

$$
\begin{aligned}
x & =\arccos (-0.283) \\
& =106.4^{\circ}
\end{aligned}
$$

This is a solution, but it's not ALL of the solutions. Far better to begin by always getting the acute working angle by initially ignoring the minus sign.

Thus;

$$
\begin{aligned}
\cos x & =0.283 \\
x & =\arccos 0.283 \\
x & =73.6^{\circ} \leftarrow \text { The working (or principle) angle }
\end{aligned}
$$

The solutions sought in the range $0^{\circ} \leqslant x \leqslant 360^{\circ}$ will be two of

$$
\begin{array}{lllll}
x & 180-x & 180+x & \text { or } & 360-x
\end{array}
$$

Now sketch the appropriate graph, either for \sin , \cos or tan In this case we want $y=\cos x$

From the sketch graph, solution sought are $180-73.6$ and $180+73.6$

$$
\therefore x=106.4^{\circ}, 253.6^{\circ}
$$

Teaching Video : http://www.NumberWonder.co.uk/v9044/1b.mp4
\leftarrow Watch the Video which talks through the example's solution

1.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

(a) Find both solutions to the equation $\cos x=0.417$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$ Your solution should include a sketch of the graph of $y=\cos x$
(b) Find both solutions to the equation $\cos x=-0.728$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

Question 2

(i) Sketch the graph of $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$
(ii) With the help of your part (i) sketch, find all solutions in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$ of the following equations;
(a) $\quad \sin x=0.622$
(b) $\quad \sin x=-0.383$
(c) $\quad 5 \sin x=3.445$

Question 3

(i) Sketch the graph of $y=\tan x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$
(ii) With the help of your part (i) sketch, find all solutions in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$ of the following equations;
(a) $\quad \tan x=4.718$
(b) $\quad \tan x=-1.383$
(c) $11 \tan x=8$

Question 4

Additional Mathematics Examination Question from June 2007, Q4 (OCR)
Find all the values of x in the range $0^{\circ}<x<360^{\circ}$ that satisfy

$$
\sin x=-4 \cos x
$$

Hint : Divide both sides by $\cos x$. It is OK to do this because $\cos x=0$ is not a solution so we're not dividing by zero. Then use the fact $\frac{\sin x}{\cos x}=\tan x$.

