A-Level Pure Mathematics : Year 1

Trigonometry IV

4.1 An Identity

When a trigonometric equation is solved, such as,

$$15 \sin^2 x - 11 \sin x + 2 = 0, \quad 0^{\circ} \le x \le 360^{\circ}$$

the task is in finding the few values of x that make the equation true.

For this example, those values are, $x = 19.5^{\circ}$, 23.6° , 156.4° , 160.5°

A trigonometric identity is a very different beast: It is true for all values of x. The perfect example of a trigonometric identity is the following:

A Key Trigonometric Identity

$$\cos^2 x + \sin^2 x = 1$$

Proof

Consider a right angled triangle with sides labelled;

O for Opposite angle xA for Adjacent to angle xH for Hypotenuse

LHS =
$$cos^2 x + sin^2 x$$

= $\left(\frac{A}{H}\right)^2 + \left(\frac{O}{H}\right)^2$
= $\frac{A^2}{H^2} + \frac{O^2}{H^2}$
= $\frac{A^2 + O^2}{H^2}$ By Pythagoras' Theorem, $A^2 + O^2 = H^2$
= $\frac{H^2}{H^2}$
= 1
= RHS

[†] This equation was solved in Lesson 2, Exercise 2.2, Question 3

4.2 Example

Solve the following trigonometric equation;

$$5 \sin x = 2 \cos^2 x - 4$$
 $0^{\circ} \le x \le 360^{\circ}$

Teaching Video: http://www.NumberWonder.co.uk/v9044/4.mp4

4.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 40

Question 1

A-Level Examination Question from January 2010, Paper C2, Q2 (Edexcel)

(a) Show that the equation

$$5\sin x = 1 + 2\cos^2 x$$

can be written in the form

$$2\sin^2 x + 5\sin x - 3 = 0$$

[2 marks]

(**b**) Solve, for $0^{\circ} \le x \le 360^{\circ}$

$$2\sin^2 x + 5\sin x - 3 = 0$$

Find all the solutions, in the interval $0 \le x \le 360^{\circ}$, of the equation

$$\cos^2 x - 3\cos x = \sin^2 x + 4$$

The next most useful trigonometric identity after $\cos^2 x + \sin^2 x = 1$ is;

Another Key Trigonometric Identity

$$\frac{\sin x}{\cos x} = \tan x \qquad (\text{Provided } \cos x \neq 0)$$

Your task now is to prove that this result is true.

Your proof will be in a similar style to that for $\cos^2 x + \sin^2 x = 1$

To get you started here are the first few parts of the proof;

Proof

Consider a right angled triangle with sides labelled;

O for Opposite angle x
A for Adjacent to angle x

H for Hypotenuse

LHS =
$$\frac{\sin x}{\cos x}$$

Complete the proof, started above.

Additional Mathematics Examination Question from June 2014, Q9 (OCR)

(i) Show that
$$\frac{1 - \cos^2 x}{1 - \sin^2 x} = \tan^2 x$$

[1 mark]

(ii) Hence solve the equation
$$\frac{1 - \cos^2 x}{1 - \sin^2 x} = 3 - 2 \tan x$$
 for values of x in the range $0^{\circ} \le x \le 180^{\circ}$

A-Level Examination Question from October 2016, Paper C12, Q10 (edited) (Edexcel)

(a) Given that

$$8 \tan x = -3 \cos x$$

show that

$$3\sin^2 x - 8\sin x - 3 = 0$$

[3 marks]

(**b**) Hence solve, for $0 \le x < 360^\circ$,

$$8\tan x = -3\cos x$$

giving your answers to one decimal place, as appropriate.

A-Level Examination Question from January 2005, Paper C2, Q4 (Edexcel)

(a) Show that the equation

$$5\cos^2 x = 3(1 + \sin x)$$

can be written as

$$5\sin^2 x + 3\sin x - 2 = 0$$

[2 marks]

(**b**) Hence solve, for $0^{\circ} \le x \le 360^{\circ}$, the equation

$$5\cos^2 x = 3(1 + \sin x)$$

giving your answers to 1 decimal place where appropriate.

A-Level Examination Question from January 2011, Paper C2, Q7 (Edexcel)

(a) Show that the equation

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

can be written in the form

$$4\sin^2 x + 7\sin x + 3 = 0$$

[2 marks]

(**b**) Hence solve, for $0^{\circ} \le x \le 360^{\circ}$

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

giving your answers to 1 decimal place where appropriate.

[5 marks]