Additional Mathematics
A-Level Pure Mathematics : Year 1
Trigonometry IV

4.1 An Identity

When a trigonometric equation is solved, such as,

$$
15 \sin ^{2} x-11 \sin x+2=0, \quad 0^{\circ} \leqslant x \leqslant 360^{\circ}
$$

the task is in finding the few values of x that make the equation true.
For this example, those values are, $x=19.5^{\circ}, 23.6^{\circ}, 156.4^{\circ}, 160.5^{\circ} \dagger$

A trigonometric identity is a very different beast: It is true for all values of x. The perfect example of a trigonometric identity is the following:

A Key Trigonometric Identity

$$
\cos ^{2} x+\sin ^{2} x=1
$$

Proof

Consider a right angled triangle with sides labelled;
O for Opposite angle x
A for Adjacent to angle x
H for Hypotenuse

$$
\begin{aligned}
\text { LHS } & =\cos ^{2} x+\sin ^{2} x \\
& =\left(\frac{A}{H}\right)^{2}+\left(\frac{O}{H}\right)^{2} \\
& =\frac{A^{2}}{H^{2}}+\frac{O^{2}}{H^{2}} \\
& =\frac{A^{2}+O^{2}}{H^{2}} \quad \text { By Pythagoras' Theorem, } A^{2}+O^{2}=H^{2} \\
& =\frac{H^{2}}{H^{2}} \\
& =1 \\
& =\text { RHS }
\end{aligned}
$$

[^0]
4.2 Example

Solve the following trigonometric equation;

$$
5 \sin x=2 \cos ^{2} x-4 \quad 0^{\circ} \leqslant x \leqslant 360^{\circ}
$$

Teaching Video : http://www.NumberWonder.co.uk/v9044/4.mp4
[6 marks]

4.3 Exercise

> Any solution based entirely on graphical
> or numerical methods is not acceptable
> Marks Available : 40

Question 1

A-Level Examination Question from January 2010, Paper C2, Q2 (Edexcel)
(a) Show that the equation

$$
5 \sin x=1+2 \cos ^{2} x
$$

can be written in the form

$$
2 \sin ^{2} x+5 \sin x-3=0
$$

(b) Solve, for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

$$
2 \sin ^{2} x+5 \sin x-3=0
$$

Question 2

Find all the solutions, in the interval $0 \leqslant x \leqslant 360^{\circ}$, of the equation

$$
\cos ^{2} x-3 \cos x=\sin ^{2} x+4
$$

Question 3

The next most useful trigonometric identity after $\cos ^{2} x+\sin ^{2} x=1$ is;

Another Key Trigonometric Identity

$$
\frac{\sin x}{\cos x}=\tan x \quad(\text { Provided } \cos x \neq 0)
$$

Your task now is to prove that this result is true.
Your proof will be in a similar style to that for $\cos ^{2} x+\sin ^{2} x=1$

To get you started here are the first few parts of the proof;

Proof

Consider a right angled triangle with sides labelled;
O for Opposite angle x
A for Adjacent to angle x
H for Hypotenuse

$$
\mathrm{LHS}=\frac{\sin x}{\cos x}
$$

Complete the proof, started above.

Question 4

Additional Mathematics Examination Question from June 2014, Q9 (OCR)
(i) Show that $\frac{1-\cos ^{2} x}{1-\sin ^{2} x}=\tan ^{2} x$
[1 mark]
(ii) Hence solve the equation $\frac{1-\cos ^{2} x}{1-\sin ^{2} x}=3-2 \tan x$ for values of x in the range $0^{\circ} \leqslant x \leqslant 180^{\circ}$

Question 5

A-Level Examination Question from October 2016, Paper C12, Q10 (edited) (Edexcel)
(a) Given that

$$
8 \tan x=-3 \cos x
$$

show that

$$
3 \sin ^{2} x-8 \sin x-3=0
$$

(b) Hence solve, for $0 \leqslant x<360^{\circ}$,

$$
8 \tan x=-3 \cos x
$$

giving your answers to one decimal place, as appropriate.

Question 6

A-Level Examination Question from January 2005, Paper C2, Q4 (Edexcel)
(a) Show that the equation

$$
5 \cos ^{2} x=3(1+\sin x)
$$

can be written as

$$
5 \sin ^{2} x+3 \sin x-2=0
$$

(b) Hence solve, for $0^{\circ} \leqslant x \leqslant 360^{\circ}$, the equation

$$
5 \cos ^{2} x=3(1+\sin x)
$$

giving your answers to 1 decimal place where appropriate.

Question 7

A-Level Examination Question from January 2011, Paper C2, Q7 (Edexcel)
(a) Show that the equation

$$
3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4
$$

can be written in the form

$$
4 \sin ^{2} x+7 \sin x+3=0
$$

(b) Hence solve, for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

$$
3 \sin ^{2} x+7 \sin x=\cos ^{2} x-4
$$

giving your answers to 1 decimal place where appropriate.

[^0]: \dagger This equation was solved in Lesson 2, Exercise 2.2, Question 3

