A-Level Pure Mathematics: Year 1
 Trigonometry IV

5.1 Solving Quadratic Equations

The solution methods for trying to solve quadratic equations include,

- Factorising into two pairs of brackets
- Completing the square
- Using the Q Formula

The Q Formula

A quadratic equation that is written in the form

$$
a x^{2}+b x+c=0 \quad \text { where } a, b \text { and } c \text { are constants }
$$

has real solutions, if any exist, given by the formula,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In the Q Formula, the expression under the square root sign, the $b^{2}-4 a c$ piece, is called the discriminant, D, as it determines how many real solutions there are.

- If $b^{2}-4 a c>0$ then there are two distinct real solutions
- If $b^{2}-4 a c=0$ then there is one (repeated) real solution
- If $b^{2}-4 a c<0$ then there are no real solutions

Given that some trigonometric equations can be viewed as quadratics in disguise it should come as no surprise that the underlying quadratic may, in some questions, not factorise into two guessable brackets; instead, the Q formula may be needed.

Try the following example, then check your answer with mine, over the page;

5.2 Example For You To Try

For the equation $x^{2}+x-1=0$
(i) What is the value of the discriminant, D ?
(ii) How many solutions will the equation have ?

5.3 Answer to 5.2 Example

For the equation $x^{2}+x-1=0$
(i) What is the value of the discriminant, D ?

$$
\begin{aligned}
& a=1, b=1, c=-1 \text { so the discriminant, } D, \text { will be; } \\
& D=b^{2}-4 a c \\
& = \\
& =1^{2}-4 \times 1 \times(-1) \\
& =1+4 \\
&
\end{aligned}
$$

(ii) How many solutions will the equation have ?
As $D>0$, the equation $x^{2}+x-1=0$ will have 2 distinct solutions
Notice that you were not asked to solve the equation !

5.4 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

For the equation $3 x^{2}+4 x+2=0$
(i) What is the value of the discriminant, D ?
(ii) How many solutions will the equation have?
[1 mark]

Question 2

By considering the discriminant, D, of the underlying quadratic equation, prove that the following trigonometric equation has no solutions;

$$
2 \tan ^{2} x-5 \tan x+4=0
$$

Question 3

(i) Use a trigonometric identity to turn the following equation into one suitable for analysing as a quadratic in disguise;

$$
\sin ^{2} x+3 \cos x-8=0
$$

(ii) By considering the discriminant, D, of your part (i) equation show that $\sin ^{2} x+3 \cos x-8=0$ has no solutions.

Question 4

A quadratic equation of the form $a x^{2}+b x+c=0$
can be solved by using the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
(i) Show how to use this formula to find the exact solutions to the equation

$$
3 x^{2}-4 \sqrt{3} x+3=0
$$

giving your answers in the form $k \sqrt{3}$ for rational values of k
(ii) Hence, or otherwise, solve over the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$ the equation

$$
3 \tan ^{2} x-4 \sqrt{3} \tan x+3=0
$$

Question 5

(i) Show how to use the Q Formula to find the solutions to the equation

$$
7 x^{2}+5 \sqrt{7} x+6=0
$$

giving your answers in the form $k \sqrt{7}$ for rational values of k.
(ii) Hence, or otherwise, solve over the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$ the equation

$$
7 \sin ^{2} x+5 \sqrt{7} \sin x+6=0
$$

