Lesson 8

Additional Mathematics A-Level Pure Mathematics : Year 1 Trigonometry IV

8.1 Rev	vision		C
		Any solution based entirely on graphical	
		or numerical methods is not acceptable	
		Marks Available : 50	
Questio	on 1		
(a)	(i)	Sketch the graph of $y = sin x$ over the interval $0^{\circ} \le x$	≤360°

[2 marks]

(ii)	Correctly place 0°,	90°,	180°,	270°,	and	360°	on the <i>x</i> -axis.	
							[1 mark	:]

(iii) Correctly place -1, 0, and +1 on the y-axis

[1 mark]

(**b**) Calculate the values of x in the domain $0^{\circ} \le x \le 360^{\circ}$ for which $\sin x = -0.416$

You are given that

$$\cos x = \frac{2}{3}$$

with $0^\circ < x < 90^\circ$

(a) Use the identity $cos^2 x + sin^2 x = 1$ to find an **exact** value for sin x and, if appropriate, simplify your answer.

[3 marks]

(**b**) Use the identity $tan x = \frac{sin x}{cos x}$ and your part (a) answer to find an **exact** value for tan x and, if appropriate, simplify your answer.

[3 marks]

Find the four values of x in the domain $0^{\circ} < x < 360^{\circ}$ that satisfy the equation

$$\cos\left(2x\right) = \frac{4}{5}$$

Give your answers to 1 decimal place.

[5 marks]

Question 4

Solve, for $0^{\circ} \le x < 360^{\circ}$

$$\sin^2 x = \frac{3}{4}$$

[5 marks]

(**a**) Show that the equation

$$5\cos^2 x + 16\sin x - 8 = 0$$

can be written as

$$5\sin^2 x - 16\sin x + 3 = 0$$

[3 marks]

(**b**) Hence solve, for
$$0^{\circ} \le x \le 720^{\circ}$$

 $5 \cos^2 x + 16 \sin x - 8 = 0$

giving your answers to 1 decimal place.

[6 marks]

Solve, for $0^\circ < x < 360^\circ$

tan x (tan x - 2) = 3

[6 marks]

A-Level Examination Question from June 2009, Paper C2, Q7b (Edexcel) Solve for $0^{\circ} \le x \le 360^{\circ}$

 $4 \sin x = 3 \tan x$

[6 marks]

Using the triangle, or otherwise, prove that, for $0^{\circ} \le x \le 90^{\circ}$ $tan^2 x \times cos^2 x + cos^2 x - 1 = 0$

[5 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk