Lesson 8

Additional Mathematics
 A-Level Pure Mathematics : Year 1
 Trigonometry IV

8.1 Revision

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

(a) (i) Sketch the graph of $y=\sin x$ over the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$
(ii) Correctly place $0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$, and 360° on the x-axis.
[1 mark]
(iii) Correctly place $-1,0$, and +1 on the y-axis
(b) Calculate the values of x in the domain $0^{\circ} \leqslant x \leqslant 360^{\circ}$ for which

$$
\sin x=-0.416
$$

Question 2

You are given that

$$
\cos x=\frac{2}{3}
$$

with $0^{\circ}<x<90^{\circ}$
(a) Use the identity $\cos ^{2} x+\sin ^{2} x=1$ to find an exact value for $\sin x$ and, if appropriate, simplify your answer.
(b) Use the identity $\tan x=\frac{\sin x}{\cos x}$ and your part (a) answer to find an exact value for $\tan x$ and, if appropriate, simplify your answer.

Question 3

Find the four values of x in the domain $0^{\circ}<x<360^{\circ}$ that satisfy the equation

$$
\cos (2 x)=\frac{4}{5}
$$

Give your answers to 1 decimal place.

Question 4

Solve, for $0^{\circ} \leqslant x<360^{\circ}$

$$
\sin ^{2} x=\frac{3}{4}
$$

Question 5

(a) Show that the equation

$$
5 \cos ^{2} x+16 \sin x-8=0
$$

can be written as

$$
5 \sin ^{2} x-16 \sin x+3=0
$$

(b) Hence solve, for $0^{\circ} \leqslant x \leqslant 720^{\circ}$

$$
5 \cos ^{2} x+16 \sin x-8=0
$$

giving your answers to 1 decimal place.

Question 6

Solve, for $0^{\circ}<x<360^{\circ}$

$$
\tan x(\tan x-2)=3
$$

Question 7

A-Level Examination Question from June 2009, Paper C2, Q7b (Edexcel)
Solve for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

$$
4 \sin x=3 \tan x
$$

Question 8

Using the triangle, or otherwise, prove that, for $0^{\circ} \leqslant x \leqslant 90^{\circ}$

$$
\tan ^{2} x \times \cos ^{2} x+\cos ^{2} x-1=0
$$

