Lesson 3

A-Level Pure Mathematics: Year 1
 Differentiation II

3.1 Differentiation from First Principles

In Lessons 1 and 2 good use was made of this rule:

$$
\text { If } y=x^{n} \quad \text { then } \quad \frac{d y}{d x}=n x^{n-1} \quad \text { for any constant } n
$$

It is time to gain some understanding of where this rule comes from and why it works. A key idea stems from our work with the tangent to a curve.

Definition: The Gradient of a Curve

The gradient of a curve at any given point on that curve is the same as the gradient of the tangent to the curve at that point

Suppose the gradient at the point P is sought.
Another point on the curve a short step away, A, is selected and the line between P and A is considered. The line between P and A is a poor approximation to what is wanted, the tangent at P.
However, as A slides along the curve towards P the approximating line becomes a better and better approximation of the desired line, the tangent at P.

Translating this argument into mathematics results in a 'first principles' mathematical definition of what a derivative is.

So, here is the same argument written as mathematics.

Let the curve be of the function, $f(x)$
Let the x coordinate of P also be x.

The point P then has coordinates $(x, f(x))$
Let the x coordinate at A be $x+h$

The point A then has coordinates $(x+h, f(x+h))$

The gradient of the line between P and A will be

$$
\begin{aligned}
m & =\frac{\Delta y}{\Delta x} \\
& =\frac{f(x+h)-f(x)}{x+h-x} \\
& =\frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

To slide the point A towards P, h has to become smaller and smaller;

Definition of The Gradient Function (The Derivative)

$$
f^{\prime}(x)=\operatorname{limit}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Using this definition to find a derivative is "differentiating from first principles".

3.2 Example

The point P with coordinates $(3,36)$ lies on the curve with equation $y=4 x^{2}$ By differentiating from first principles, determine the gradient at P.

3.3 Exercise

Marks Available : 40

Question 1

(i) Try to write down from memory, the first principles definition of a curve's gradient equation.
(ii) The point P with coordinates (5,25) lies on the curve $y=x^{2}$ By differentiating from first principles, determine the gradient at P.

Question 2

The point P with coordinates $(4,48)$ lie on the curve $y=3 x^{2}$
By differentiating from first principles, determine the gradient at P.

Question 3

The point P with coordinates $(2,7)$ lie on the curve $y=x^{2}+3$ By differentiating from first principles, determine the gradient at P.

Question 4

The point P with coordinates $(1,5)$ lie on the curve $y=x^{3}+4 x$ By differentiating from first principles, determine the gradient at P.

Question 5

(i) By using the binomial theorem, or otherwise, expand $(3+h)^{4}$
(ii) The point P with coordinates $(3,81)$ lie on the curve $y=x^{4}$ By differentiating from first principles, determine the gradient at P.

Question 6

Consider the function

$$
f(x)=\frac{1}{x}
$$

The point P with coordinates (5, 0.2) lies on the curve of $f(x)$

By differentiating from first principles, determine the gradient at P.

