Lesson 5

A-Level Pure Mathematics: Year 1

Differentiation II

5.1 Local Minimum \& Local Maximum

Differentiation is used to find the optimal solutions to problems.
On a graph, such 'best' solutions are often found where there is either a local maximum or a local minimum.

Mathematically, to find all turning points on a curve:
STEP 1 : Differentiate the POINTS equation to get the GRADIENT equation.
STEP 2 : Set the GRADIENT equation equal to zero and solve.
STEP 3 : Put the solution(s) from STEP 2 into the POINTS equation to get a list of possible turning points.
Be aware that there may be points of inflection in this list.
STEP 4 : Differentiate the GRADIENT equation to get the BEND equation.
STEP 5 : Put the solution(s) from STEP 2 back into the BEND equation.

- A turning point with positive bend is a local MINimum.
- A turning point with negative bend is a local MAXimum.

Alas, a bend of zero does not determine the nature of the turning point; it could be a minimum, a maximum or a point of inflection.

5.2 Example

(i) The curve $y=f(x)$ where $f(x)=x^{3}+12 x$ has no turning points. Show that this is the case by trying to find them via the mathematical method.
(ii) Circle which one of the following best describes $f(x)$; $f(x)$ is a decreasing function $\quad f(x)$ is a strictly decreasing function $f(x)$ is an increasing function
$f(x)$ is a strictly increasing function

5.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable
> Marks Available :52

Question 1

A curve has equation $y=x^{3}+3 x^{2}-24 x$
Using calculus, find the coordinates of the turning points of the curve and also determine their nature.

Question 2

The curve with equation $y=8 x^{2}+\frac{2}{x}$ has one turning point. Find the coordinates of this turning point and determine its nature. Use calculus, and show your working clearly.

Question 3

Consider the polynomial curve, $y=5 x^{5}-7 x^{3}$
(i) Write down the gradient equation of the polynomial curve.

$$
\frac{d y}{d x}=
$$

(ii) Write down the bend detector equation of the polynomial curve.

$$
\frac{d^{2} y}{d x^{2}}=
$$

(iii) Use the appropriate equation to find the point on the curve when $x=1$
(iv) Use the appropriate equation to find the gradient of the curve when $x=1$
(\mathbf{v}) Use the appropriate equation to determine, when $x=1$, if the curve is bending clockwise or anticlockwise.

Question 4

The diagram shows a rectangular photo frame of area $A \mathrm{~cm}^{2}$.
The width of the photo frame is $x \mathrm{~cm}$.
The height of the photo frame is $y \mathrm{~cm}$.
The perimeter of the photo frame is 72 cm .
(i) Show that $A=36 x-x^{2}$
(ii) Find $\frac{d A}{d x}$
[2 marks]
(iii) Find the maximum value of A.
[3 marks]
(iv) Show that $\frac{d^{2} A}{d x^{2}}$ detects correctly that your part (iii) answer is a maximum.

Question 5

(a) For the equation $y=5000 x-625 x^{2}$, find $\frac{d y}{d x}$
(b) Find the coordinates of the turning point of $y=5000 x-625 x^{2}$
(c) (i) State whether this turning point is a maximum or a minimum.
(ii) Give a reason for your answer.
(d) A publisher has to set the price for a new book.

The profit, $£ y$, depends on the price of the book, $£ x$, where

$$
y=5000 x-625 x^{2}
$$

(i) What price would you advise the publisher to set for the book ?
(ii) Give a reason for your answer.

Question 6

(a) Complete the table of values for $y=x^{3}-12 x+2$

x	-3	-2	-1	0	1	2	3	4
y	11						-7	18

(b) On the grid, draw the graph of $y=x^{3}-12 x+2$

(c) For the curve with equation $y=x^{3}-12 x+2$
(i) Find $\frac{d y}{d x}$
(ii) find the gradient of the curve at the point where $x=5$

Question 7

GCSE Examination question from June 2011, 3H, Q21.

Diagram NOT accurately drawn
$A B C D$ is a rectangle
$A B=10 \mathrm{~cm}$
$B C=8 \mathrm{~cm}$
P, Q, R and S are points on the sides of the rectangle.
$B P=C Q=D R=A S=x \mathrm{~cm}$
(a) Show that the area, $A \mathrm{~cm}^{2}$, of the quadrilateral $P Q R S$ is given by the formula

$$
A=2 x^{2}-18 x+80
$$

(b) For $A=2 x^{2}-18 x+80$
(i) find $\frac{d A}{d x}$
(ii) find the value of x for which A is a minimum.
(iii) Explain how you know that A is a minimum for this value of x.

