A-Level

~ Year 2 ~

Pure Mathematics

Arithmetic Progrestions

Carl Friedrich Gauss [1777-1855] and the problem of summing the first one hundred positive integers.
This calculation is an example of summing an Arithmetic Progression.

Arithmetic Progressions

Lesson 1

A-Level Pure Mathematics
Sequences \& Series : Year 2

1.1 Sigma Notation

Teaching Video : http://www.NumberWonder.co.uk/Video/v9049(1).mp4

(i) Study and complete the flow chart below;

(ii) Determine the value of;
(a) $\quad \sum_{1}^{5}(4 n+3)$
(b) $\quad \sum_{2}^{5}(4 n+3)$

1.2 Exercise

Question 1

(i) Study and complete the flow chart below;

(ii) Determine the value of;
(a)
(b)
$\sum_{1}^{8}(7 n-4)$
$\sum_{4}^{8}(7 n-4)$

Question 2

(i) Study and complete the flow chart below;

(ii) Determine the value of;
(a)
(b)
$\sum_{1}^{6}(20-3 n)$
$\sum_{2}^{5}(20-3 n)$

Question 3

Determine the value of

$$
\sum_{1}^{5}(10 n+3)
$$

Question 4

(i) Write down the formula for the $n^{\text {th }}$ term of the following sequence;

$$
3,5,7,9,11, \ldots
$$

(ii) Express the following series in sigma notation;

$$
3+5+7+9+11
$$

Question 5

Showing some working, determine the value of

$$
\sum_{10}^{15}(100-5 n)
$$

Question 6

(i) Write down the formula for the $n^{\text {th }}$ term of the following sequence;

$$
5,8,11,14,17,20, \ldots
$$

(ii) Write the following series in sigma notation;

$$
5+8+11+14+17+20+23+26+29
$$

Question 7

Write the following series in sigma notation;

$$
10+21+32+43+54+65+76+87+98+109+120
$$

Question 8

Write the following series in sigma notation;

$$
1-2-5-8-11-14-17
$$

Question 9

The sequences and series considered have all been in in Arithmetic Progression. Two numbers determine an Arithmetic Progression.

- The first term, a
- The common difference, d

Example

When $a=6$ and $d=4$ the sequence specified is;

$$
\begin{gathered}
6, \quad(6+4), \quad(6+4+4),(6+4+4+4+4), \ldots \\
6,10,14,22, \ldots
\end{gathered}
$$

Write down the first five terms of the Arithmetic Progression specified by,
(i) $a=5, d=6$
(ii) $a=16, d=-3$
(iii) $\quad a=11, d=-7$

Question 10

Write down the formula for the $n^{\text {th }}$ term of the following Arithmetic Progressions;
(i) $\quad a=3, d=8$
(ii) $\quad a=7, d=5$
(iii) $a=9, d=-4$

Question 11

(i) Explain why the following series has 4 terms;

$$
\sum_{3}^{6}(6 n+1)
$$

(ii) How many terms has the following series ?

$$
\sum_{5}^{11}(6 n-1)
$$

(iii) How many terms has the following series?

$$
\sum_{15}^{47}(17 n+13)
$$

