Additional Mathematics
A-Level Pure Mathematics : Year 1
Binomial Expansion

7.1 Investigating Binomial Probability

Binomial means "two state": A real life "two state" situation is the flipping of a coin.

Suppose a biased coin is weighted with a probability of 0.36 of landing tails.
It is flipped 8 times. What is the probability that it lands tails exactly twice ?
To answer this question we begin by wanting to know
H H H H H H T T

H H H H H T H T
H H H H H T TH

H H H H THHT
H H H H THTH H H H H T T H H

11
121
$\begin{array}{llll}1 & 3 & 3 & 1\end{array}$
$\begin{array}{lllll}1 & 4 & 6 & 4 & 1\end{array}$
$\begin{array}{llllll}1 & 5 & 10 & 10 & 5 & 1\end{array}$
$\begin{array}{lllllll}1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}$
$\begin{array}{llllllll}1 & 7 & 21 & 35 & 35 & 21 & 7 & 1\end{array}$
$\begin{array}{lllllllll}1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1\end{array}$

Method 3 : Use a calculator

$$
{ }^{8} C_{2}=28
$$

HTHHHHHT HTHHHHTH HTHHHTHH HTHHTHHH HTHTHHHH HTTHHHHH

THHHHHHT
THHHHHTH
THHHHTHH THHHTHHH THHTHHHH THTHHHHH T T H H H H H H

Having got the 28...

Each of the 28 items in the list will be a multiplication of $0.36 \times 0.36 \times 0.64 \times 0.64 \times 0.64 \times 0.64 \times 0.64 \times 0.64$ (with those same numbers occurring in different orders) Thus the quick calculation is;

$$
\begin{aligned}
& 28 \times 0.36^{2} \times 0.64^{6} \\
& =28 \times 0.1296 \times 0.0687 \\
& =0.249 \text { (Give answers to } 3 \text { decimal places) }
\end{aligned}
$$

So, when this biased coin is flipped eight times, there is a 25% probability it will land tails exactly twice.

7.2 Exercise

Marks Available : 60

Question 1

Here is Pascal's Triangle, left justified.
1
11
121
$\begin{array}{llll}1 & 3 & 3 & 1\end{array}$
$\begin{array}{lllll}1 & 4 & 6 & 4 & 1\end{array}$
$\begin{array}{llllll}1 & 5 & 10 & 10 & 5 & 1\end{array}$
$\begin{array}{lllllll}1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}$
$\begin{array}{llllllll}1 & 7 & 21 & 35 & 35 & 21 & 7 & 1\end{array}$
$\begin{array}{lllllllll}1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1\end{array}$
(i) Circle the entry in Row 7, Column 5

Notice this is in the 8th row and the $6^{\text {th }}$ column!
[1 mark]
(ii) Use your calculator to determine ${ }^{7} C_{5}$

This should be your part (i) answer
[1 mark]

Question 2

Here is Pascal's Triangle, left justified.
1
11
121
$\begin{array}{llll}1 & 3 & 3 & 1\end{array}$
$\begin{array}{lllll}1 & 4 & 6 & 4 & 1\end{array}$
$\begin{array}{llllll}1 & 5 & 10 & 10 & 5 & 1\end{array}$
$\begin{array}{lllllll}1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}$
$\begin{array}{llllllll}1 & 7 & 21 & 35 & 35 & 21 & 7 & 1\end{array}$
$\begin{array}{lllllllll}1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1\end{array}$
$1 \begin{array}{lllllllll}1 & 9 & 36 & 84 & 126 & 126 & 84 & 36 & 9\end{array} 1$
(i) Circle the entry in Row 4, Column 0
(ii) Circle the entry in Row 5, Column 5
(iii) Circle the entry in Row 9, Column 3
(iv) Find a solution pair (n, r) to

$$
{ }^{n} C_{r}=70
$$

Question 3

Use your calculator to determine ${ }^{13} C_{5}$
[1 mark]

Question 4

A coin is flipped 6 times.
(i) Describe which calculator buttons you would press in order to determine the number of ways exactly 2 tails could be obtained ?
[1 mark]
(ii) Write out enough of Pascal's Triangle so that you can then draw a circle around the number in it, corresponding to your part (i) answer
[2 marks]

Question 5

A coin is flipped 20 times.
In how many ways can exactly 13 tails be obtained ?
HINT : Use a calculator.
[2 marks]

Question 6

A coin is flipped 40 times.
In how many ways can exactly 5 heads be obtained?

Question 7

A biased coin is weighted such that it has a probability of 0.45 of landing tails. It is flipped 8 times. What is the probability that it lands tails exactly thrice? Give your answer to 3 decimal places.
[4 marks]

Question 8

A typist has a probability of 0.99 of typing each letter in a sentence correctly. What is the percentage probability of exactly two mistakes in a sentence containing 180 letters, if mistakes are made at random? Give your answer to 3 decimal places.
[4 marks]

Question 9

In a box of Smarties ${ }^{\mathrm{TM}}$ there are eight different colours which normally occur in equal proportions. Sebastian is given 24 Smarties $^{\mathrm{TM}}$, and blue ones are his favourite. Assume these come from a very large box.
(i) How many blue Smarties ${ }^{\mathrm{TM}}$ would he expect to get (on average) ?
(ii) What is the probability that he gets this number?
[4 marks]
(iii) What is the probability that he gets fewer than expected ?
[4 marks]
(iv) What is the probability that he gets more than expected?
[1 mark]
(v) Explain why the assumption was made that the 24 Smarties ${ }^{\mathrm{TM}}$ given to Sebastian came from a very large box ?

Question 10

(i) Determine ${ }^{6} C_{2}$
(ii) Determine ${ }^{6} C_{4}$
(iii) Explain with the help of Pascal's Triangle why ${ }^{6} C_{2}={ }^{6} C_{4}$
(iv) Explain, in your own words, why ${ }^{n} C_{0}={ }^{n} C_{n}$
(v) Explain, in your own words, why ${ }^{n} C_{2}={ }^{n} C_{n-2}$
(vi) What formula can be written down for ${ }^{n} C_{m}$ that generalises the observations made above ?

The next question is about obtaining the probability distribution curve for a simple coin flipping situation.

Question 11

A biased coin is weighted such that it has a probability of 0.4 of landing tails. It is flipped 6 times.
(i) Show that the probability of exactly 4 tails being obtained is 0.138 . That is, about 14% probable.
(ii) Work out the probability of exactly $0,1,2,3,5$ and 6 tails being obtained. Present your solutions in the table below.

N° of tails	0	1	2	3	4	5	6
Probability					14%		

[8 marks]
(iii) Present your table of results as an accurate bar chart.

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2023 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

