Lesson 7

Additional Mathematics A-Level Pure Mathematics : Year 1 Binomial Expansion

7.1 Investigating Binomial Probability

Binomial means "two state": A real life "two state" situation is the flipping of a coin.

Suppose a biased coin is weighted with a probability of 0.36 of landing tails. It is flipped 8 times. What is the probability that it lands tails exactly twice ?

Н Н Н Н Н Н <mark>Т Т</mark>	how many different ways 2 tails and 6 heads can occur.			
ннннтнт	Method 1 : List them and observe the list has 28 entries			
ННННТТН	Takes time and is tricky to get correct.			
ннннтннт	Method 2 · Write out Pascal's Triangle			
иннитити	Observe that Row & Column 2 is 28			
	Less time but a tedious job for just one number			
	1			
	1 1			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
11 11 T 11 11 11 11 T				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	1 / 21 35 35 21 / 1			
	1 8 28 56 70 56 28 8 1			
ннтнтннн				
ннттннн	Method 3 : Use a calculator			
	${}^{8}C_{2} = 28$			
Н <mark>Т</mark> Н Н Н Н Н Т				
Н <mark>Т</mark> Н Н Н Н <mark>Т</mark> Н	Having got the 28			
Н <mark>Т</mark> Н Н Н <mark>Т</mark> Н Н	Each of the 28 items in the list will be a multiplication			
Н <mark>Т</mark> Н Н <mark>Т</mark> Н Н Н	of 0.36 \times 0.36 \times 0.64 \times 0.64 \times 0.64 \times 0.64 \times 0.64 \times 0.64			
нтнтннн	(with those same numbers occurring in different orders)			
НТТННННН	Thus the quick calculation is:			
	$28 \times 0.36^{2} \times 0.64^{\circ}$			
ТНННННТ	$= 28 \times 0.1296 \times 0.0687$			
ТННННТН	= 0.249 (Give answers to 3 decimal places)			
Т Н Н Н Н <mark>Т</mark> Н Н				
Т Н Н Н <mark>Т</mark> Н Н Н	So, when this biased coin is flipped eight times, there is			
Т Н Н Т Н Н Н Н	a 25% probability it will land tails exactly twice.			
<mark>Т</mark> Н Т Н Н Н Н Н				
<u>Т Т Н Н Н Н Н Н</u>				

7.2 Exercise

Marks Available : 60

Question 1

Here is Pascal's Triangle, left justified.

1							
1	1						
1	2	1					
1	3	3	1				
1	4	6	4	1			
1	5	10	10	5	1		
1	6	15	20	15	6	1	
1	7	21	35	35	21	7	1
1	8	28	56	70	56	28	8

(i)	Circle the entry in Row 7, Column 5
	Notice this is in the 8th row and the 6 th column !

- [1 mark]
- (ii) Use your calculator to determine ⁷C₅
 This should be your part (i) answer
 [1 mark]

1

Question 2

Here is Pascal's Triangle, left justified.

1			
1	1		
1	2	1	
1	3	3 1	
1	4	6 4 1	
1	5	10 10 5 1	
1	6	15 20 15 6 1	
1	7	21 35 35 21 7 1	
1	8	28 56 70 56 28 8 1	
1	9	36 84 126 126 84 36 9 1	
(i (ii (ii (iv) i) ii) v)	Circle the entry in Row 4, Column 0 Circle the entry in Row 5, Column 5 Circle the entry in Row 9, Column 3 Find a solution pair (n, r) to ${}^{n}C_{r} = 70$	[1 mark] [1 mark] [1 mark]
			[1 mark]

Question 3

Use your calculator to determine ${}^{13}C_5$

[1 mark]

Question 4

A coin is flipped 6 times.

(i) Describe which calculator buttons you would press in order to determine the number of ways exactly 2 tails could be obtained ?

[1 mark]

(ii) Write out enough of Pascal's Triangle so that you can then draw a circle around the number in it, corresponding to your part (i) answer

[2 marks]

Question 5

A coin is flipped 20 times. In how many ways can exactly 13 tails be obtained ? HINT : Use a calculator.

[2 marks]

Question 6

A coin is flipped 40 times. In how many ways can exactly 5 heads be obtained ?

[2 marks]

Question 7

A biased coin is weighted such that it has a probability of 0.45 of landing tails. It is flipped 8 times. What is the probability that it lands tails exactly thrice ? Give your answer to 3 decimal places.

[4 marks]

Question 8

A typist has a probability of 0.99 of typing each letter in a sentence correctly. What is the percentage probability of exactly two mistakes in a sentence containing 180 letters, if mistakes are made at random? Give your answer to 3 decimal places.

[4 marks]

Question 9

In a box of SmartiesTM there are eight different colours which normally occur in equal proportions. Sebastian is given 24 SmartiesTM, and blue ones are his favourite. Assume these come from a very large box.

(i) How many blue SmartiesTM would he expect to get (on average) ?

[1 mark]

(ii) What is the probability that he gets this number ?

[4 marks]

(iii) What is the probability that he gets fewer than expected ?

[4 marks]

(iv) What is the probability that he gets more than expected ?

[1 mark]

(v) Explain why the assumption was made that the 24 SmartiesTM given to Sebastian came from a very large box ?

[2 marks]

Question 10

(i) Determine ${}^{6}C_{2}$

[1 mark]

[1 mark]

(ii) Determine ${}^{6}C_{4}$

(iii) Explain with the help of Pascal's Triangle why ${}^{6}C_{2} = {}^{6}C_{4}$

[2 marks]

(iv) Explain, in your own words, why ${}^{n}C_{0} = {}^{n}C_{n}$

[2 marks]

(**v**) Explain, in your own words, why ${}^{n}C_{2} = {}^{n}C_{n-2}$

[2 marks]

(vi) What formula can be written down for ${}^{n}C_{m}$ that generalises the observations made above ?

[2 marks]

The next question is about obtaining the probability distribution curve for a simple coin flipping situation.

Question 11

A biased coin is weighted such that it has a probability of 0.4 of landing tails. It is flipped 6 times.

(i) Show that the probability of exactly 4 tails being obtained is 0.138. That is, about 14% probable.

[2 marks]

(**ii**) Work out the probability of exactly 0, 1, 2, 3, 5 and 6 tails being obtained. Present your solutions in the table below.

N° of tails	0	1	2	3	4	5	6
Probability					14%		

[8 marks]

(iii) Present your table of results as an accurate bar chart.

[6 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk