Lesson 8

Additional Mathematics

A-Level Pure Mathematics : Year 1
 Binomial Expansion

8.1 The Binomial Theorem

Previously, ${ }^{\dagger}$ expanding the brackets of $(3-2 x)^{4}$ was tackled.
Here is a reminder of the recommended method of setting out a solution;

$$
\left.\begin{array}{rllllll}
\quad(3-2 x)^{4}= & & 1 & \times & (3)^{4} & \times & (-2 x)^{0} \\
& + & 4 & \times & (3)^{3} & \times & (-2 x)^{1} \\
& + & 6 & \times & (3)^{2} & \times & (-2 x)^{2} \\
& + & 4 & \times & (3)^{1} & \times & (-2 x)^{3} \\
& + & 1 & \times & (3)^{0} & \times & (-2 x)^{4}
\end{array}\right] \begin{array}{ll}
\\
\therefore \quad(3-2 x)^{4}=81-216 x+216 x^{2}-96 x^{3}+16 x^{4}
\end{array}
$$

This method can be generalised to give The Binomial Theorem;

$$
\begin{aligned}
(a+b)^{n} & ={ }^{n} C_{0} \quad \times(a)^{n} \quad \times(b)^{0} \\
& +{ }^{n} C_{1} \quad \times(a)^{n-1} \times(b)^{1} \\
& +{ }^{n} C_{2} \quad \times(a)^{n-2} \times(b)^{2} \\
& +{ }^{n} C_{3} \quad \times(a)^{n-3} \times(b)^{3} \\
& +\ldots \\
& +{ }^{n} C_{r} \quad \times(a)^{n-r} \times(b)^{r} \\
& +\ldots \\
& +{ }^{n} C_{n-1} \times(a)^{1} \quad \times(b)^{n-1} \\
& +{ }^{n} C_{n} \quad \times(a)^{0} \quad \times(b)^{n}
\end{aligned}
$$

The Binomial Theorem (for integer n)

$$
(a+b)^{n}=a^{n}+{ }^{n} C_{1} a^{n-1} b+\ldots+{ }^{n} C_{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

This is provided to candidates in Additional Mathematics and A-Level exams

[^0]
8.2 Exercise

$$
\text { Marks Available : } 40
$$

Question 1

Expand the brackets

$$
\begin{array}{rlllll}
\left(5 x-x^{2}\right)^{3}= & & 1 & \times & (&)
\end{array} \times
$$

So,

$$
\left(5 x-x^{2}\right)^{3}=
$$

Question 2

In mathematics the pling symbol "!" means "factorial"
$5!=5 \times 4 \times 3 \times 2 \times 1$
Check, on your calculator, that $5!=120$ (Using the special button marked "!")
Work out
(i) 6 !
(ii) 10 !
(iii) 13 !

Question 3

My calculator gives an error message when I try to work out 94!
The answer is way too big for my calculator to handle.
What is the smallest number, x, for which your calculator cannot calculate x !?

Question 4

Given calculator limitations, there is no point using one to work out

$$
\frac{5000!}{4999!}
$$

However, the answer, if you think about it, is easy to obtain using brain power. What is the answer?

Question 5

Work out the following using a mixture of cunning and calculator
(i) $\frac{100!}{99!}$
(ii) $\frac{101!}{98!}$
(iii)
$\frac{2021!}{2018!}$

[1, 2, 3 marks]

Question 6

Simplify

$$
\frac{(n+4)!}{(n+1)!}
$$

Question 7

Simplify

$$
\frac{(n+1)!}{(n-1)!}
$$

Question 8

The numbers in Pascal's Triangle are given by

$$
{ }^{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

Use this to derive a simplified expression for ${ }^{n} C_{2}$

Question 9

Expand the brackets;

$$
(2+x)(4+5 x)^{3}
$$

Question 10

Further Mathematics Specimen Exam Paper 1, June 2020, Q16 (AQA)
The coefficient of the x^{4} term in the expansion of $(2 x+a)^{6}$ is 60
Work out the possible values of a

[^0]: \dagger In Lesson 4. Example 4.2, along with a Teaching Video solution

