Lesson 8

Additional Mathematics A-Level Pure Mathematics : Year 1 Binomial Expansion

8.1 The Binomial Theorem

Previously,[†] expanding the brackets of $(3 - 2x)^4$ was tackled. Here is a reminder of the recommended method of setting out a solution;

$$(3 - 2x)^{4} = 1 \times (3)^{4} \times (-2x)^{0}$$

+ 4 × (3)^{3} × (-2x)^{1}
+ 6 × (3)^{2} × (-2x)^{2}
+ 4 × (3)^{1} × (-2x)^{3}
+ 1 × (3)^{0} × (-2x)^{4}

$$\therefore (3 - 2x)^4 = 81 - 216x + 216x^2 - 96x^3 + 16x^4$$

This method can be generalised to give The Binomial Theorem;

$$a + b)^{n} = {}^{n}C_{0} \times (a)^{n} \times (b)^{0}$$

$$+ {}^{n}C_{1} \times (a)^{n-1} \times (b)^{1}$$

$$+ {}^{n}C_{2} \times (a)^{n-2} \times (b)^{2}$$

$$+ {}^{n}C_{3} \times (a)^{n-3} \times (b)^{3}$$

$$+ \dots$$

$$+ {}^{n}C_{r} \times (a)^{n-r} \times (b)^{r}$$

$$+ \dots$$

$$+ {}^{n}C_{n-1} \times (a)^{1} \times (b)^{n-1}$$

$$+ {}^{n}C_{n} \times (a)^{0} \times (b)^{n}$$

The Binomial Theorem (for integer *n*)

(

 $(a + b)^{n} = a^{n} + {}^{n}C_{1}a^{n-1}b + \dots + {}^{n}C_{r}a^{n-r}b^{r} + \dots + b^{n}$

This is provided to candidates in Additional Mathematics and A-Level exams

† In Lesson 4. Example 4.2, along with a Teaching Video solution

8.2 Exercise

Marks Available : 40

Question 1

Expand the brackets

$\left(5x-x^2\right)^3 =$		1	×	()	×	()
	+	3	×	()	×	()
	+	3	×	()	×	()
	+	1	×	()	×	()

So,

 $\left(5x - x^2\right)^3 =$

[5 marks]

Question 2

In mathematics the pling symbol "!" means "factorial" $5! = 5 \times 4 \times 3 \times 2 \times 1$ Check, on your calculator, that 5! = 120 (Using the special button marked "!") Work out (i) 6! (ii) 10! (iii) 13!

[3 marks]

Question 3

My calculator gives an error message when I try to work out 94! The answer is way too big for my calculator to handle. What is the smallest number x for which your calculator connet calculator

What is the smallest number, x, for which your calculator cannot calculate x!?

[1 mark]

Question 4

Given calculator limitations, there is no point using one to work out

5000!

4999!

However, the answer, if you think about it, is easy to obtain using brain power. What is the answer ?

[2 marks]

Question 5

Work out the following using a mixture of cunning and calculator

(i) $\frac{100!}{99!}$ (ii) $\frac{101!}{98!}$ (iii) $\frac{2021!}{2018!}$

[1, 2, 3 marks]

Question 6 Simplify

$$\frac{(n+4)!}{(n+1)!}$$

[3 marks]

Question 7 Simplify

$$\frac{(n+1)!}{(n-1)!}$$

[3 marks]

Question 8

The numbers in Pascal's Triangle are given by

$${}^{n}C_{r} = \frac{n!}{r! (n-r)!}$$

Use this to derive a simplified expression for ${}^{n}C_{2}$

[4 marks]

Question 9 Expand the brackets;

$$(2 + x) (4 + 5x)^3$$

[8 marks]

Question 10

Further Mathematics Specimen Exam Paper 1, June 2020, Q16 (AQA)

The coefficient of the x^4 term in the expansion of $(2x + a)^6$ is 60 Work out the possible values of a

[5 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk