Chapter 4

GCSE Mathematics
The Classification of Numbers

4.1π

This world famous number is defined as being the ratio of any circle's circumference, C, to its diameter, d;

$$
C: d
$$

In other words,

$$
\pi=\frac{C}{d}
$$

No matter what circle is having its circumference and diameter measured, when the first is divided by the second, the same number, π, is the result.
Like $\sqrt{2}, \pi$ is an irrational number, \mathbb{P}, and so it can not be written exactly as a ratio of integers, or exactly as a decimal.

$$
\pi=3.14 \ldots \text { (approximately) }
$$

The value of π is stored to more decimal places on your calculator. A practical use of knowing π, and of knowing that it is the same for all circles, is that a couple of useful formulae now allow us to measure a particular circle's radius, (which is easy from a practical point of view) and calculate its area, A, and its circumference, C, (which are awkward to do by other means).

$$
A=\pi r^{2}
$$

and

$$
C=2 \pi r
$$

4.2 Proof that π is not an integer

It is difficult to prove that π is irrational, but we can easily prove it's not an integer. The proof is in two parts.

Firstly, consider the following where a circle is placed inside a square,

$$
P=8 r
$$

$$
C<8 r
$$

Secondly, consider the following where a hexagon is placed inside a circle,

So, we have a sandwich inequality,

$$
\begin{aligned}
& 6 r<C<8 r \\
& 6 r<2 \pi r<8 r \\
& \\
& 6<2 \pi<8 \quad \\
& \text { (Dividing through by } r \text {) } \\
& 3<\pi<4 \quad \\
&\text { (Dividing through by } 2)
\end{aligned}
$$

As there are no integers between 3 and 4 and we have a mathematical proof (a watertight argument) that π can not be an integer,

4.3 Exercise

You may use a calculator

Marks Available : 60

Question 1

A bathroom towel holder is made from a length of wire in the shape of a semi-circle of diameter 20 cm .

20 cm

Calculate the length of the wire used.
Give your answer correct to two decimal places.

Question 2

Which of the following is the closest approximation to π ?

$$
\begin{array}{lll}
\frac{25}{8} & \frac{3}{1} & \sqrt{10}
\end{array}
$$

Question 3

Which of the following is the closest approximation to $\sqrt{2}$?
$\frac{3}{2}$
$\frac{\pi}{2}$
$\frac{7}{5}$

Question 4

Under each expression write \mathbb{Q} if it's rational, or \mathbb{P} if it's irrational.
(i) π^{2}
(ii) $\frac{8 \pi}{3 \pi}$
(iii) $\sqrt{\pi}$
(iv) π^{0}
(v) $\frac{1}{\pi}$
(vi) $(\pi+5)(\pi-5)-\pi^{2}$

[6 marks]

Question 5

In a cuboid with sides of lengths a, b and c, the longest diagonal in the box, d, is given by a three dimensional version of Pythagoras' Theorem.

(i) Work out the length of the longest diagonal of a cuboid that measures 9 cm by 6 cm by 2 cm
(ii) Is your part (i) answer a rational number or an irrational number?

Question 6

Although $\sqrt{12}$ is an irrational number, and $\sqrt{3}$ is also an irrational number, the expression $\frac{7 \sqrt{12}}{2 \sqrt{3}}$ is rational. Explain why this is so.

Question 7

(i) Find the AREA of a circle of radius 10 cm .

Give your answer correct to the nearest integer.
(ii)

Find the AREA of the shape.
Give your answer to the nearest integer.
(iii)

Find the AREA of the shape.
Give your answer to the nearest integer.

Question 8

GCSE Examination Question from June 1995, Q11 (Edexcel)

$$
x=\sqrt{a^{2}+b^{2}}
$$

State whether x is rational or irrational in each of the following cases, and show sufficient working to justify each answer.
(a) $\quad a=5$ and $b=12$
(b) $\quad a=5$ and $b=6$
(c) $\quad a=\sqrt{2}$ and $b=\sqrt{7}$
(d) $\quad a=\frac{3}{7}$ and $b=\frac{4}{7}$

Question 9

GCSE Examination Question from June 1996, Q8 (Edexcel)
Here are some irrational numbers.

$$
\begin{array}{llllll}
\sqrt{3} & \sqrt{5} & \sqrt{8} & \pi & \sqrt{12} & \sqrt{50}
\end{array}
$$

(a) Use two of these numbers to show that, if two irrational numbers are multiplied together, the result can be a rational number.
(b) Use two of these numbers to show that, if two irrational numbers are divided, the result can be a rational number.
[2 marks]

Question 10

GCSE Examination Question from June 1994, Q7 (Edexcel)
Which of the following numbers are rational and which irrational ?

$$
\sqrt{4 \frac{1}{4}} \quad \sqrt{6 \frac{1}{4}} \quad \frac{1}{3}+\sqrt{3} \quad\left(\frac{1}{3} \sqrt{3}\right)^{2}
$$

Express each of the rational numbers in the form $\frac{p}{q}$ where p and q are integers, $q \neq 0$.

Question 11

Prove that each of the following statements is false by giving a counter example.
(i) The square of any number is always greater than the original number.
[2 marks]
(ii) For every pair of integers, n and m, if $n>m$ then $n^{2}>m^{2}$
(iii) The product of two irrational numbers is always irrational.
[2 marks]

Question 12

Under each expression write \mathbb{Q} if it's rational, or \mathbb{P} if it's irrational.
(i) $\sqrt{2}$
(ii) $\sqrt{2} \times \sqrt{8}$
(iii) $8 \times \sqrt{2}$
(iv) $\sqrt{8+2}$
(v) $\frac{\sqrt{8}}{\sqrt{2}}$
(vi) $\sqrt{8}$

Question 13

If $a=1+\sqrt{2}$ and $b=1-\sqrt{2}$ find the exact value of the following; (You will have to leave irrational numbers written as square roots) In each case state if your answer is Rational or Irrational.
(i) $a+b$
(ii) $a-b$
(iii) $2 a+b$
(iv) $\sqrt{2} a$
(v) a^{2}
(vi) $a b$

