Chapter 5

GCSE Mathematics
The Classification of Numbers

5.1 Revision

Make sure you know the difference between,

$$
\begin{array}{ll}
\text { - Integers } & \mathbb{Z} \\
\text { - Rationals } & \mathbb{Q} \\
\text { - Irrationals } & \mathbb{P}
\end{array}
$$

If all of the rational numbers, \mathbb{Q}, are merged with all of the irrational numbers, \mathbb{P}, the result is the real numbers, \mathbb{R}, which (for GCSE) are "all the numbers you know about" (At A-Level another type of number is encountered).

Integers: $\mathbb{Z} \quad$ Numbers from the set $\{\ldots-3,-2,-1,0,1,2,3, \ldots\}$ If it helps, think of these as the "not fractions"
(But keep in mind that, for example, $7=\frac{7}{1}$)

Rationals: $\mathbb{Q} \quad$ Numbers that can be written in the form $\frac{p}{q}$ for integer p and q.
Note that $q \neq 0$, as division by zero has no mathematical meaning.
When written as a decimal expansion the digits of the expansion
either * terminate
or $\quad *$ form a repeating pattern without end

Irrationals: $\mathbb{P} \quad$ Numbers like π and $\sqrt{2}$
Such numbers CANNOT be written as $\frac{p}{q}$ for integer p and q.
When written as a decimal expansion the digits of the expansion

* never terminate
and $\quad *$ form no repeating pattern

Exam questions often try to write a rational number in a way that makes it look like an irrational number,

$$
(\sqrt{\pi})^{0}
$$

or make an irrational number look like it is rational,

$$
\frac{\pi+1}{\pi}
$$

5.2 Exercise

Do NOT use a calculator
 Marks Available : 50

Question 1

$\sqrt{7}=2.645751311 \ldots$
List all of the integers, n, which satisfy

$$
-\sqrt{7}<n<\sqrt{7}
$$

Question 2

Calculate the exact length of this triangle's hypotenuse.

Question 3

(i) Leaving your answer written in terms of π, calculate the exact area of a circle which has a radius of 12 cm .
[3 marks]
(ii) Give your part (i) answer as a decimal accurate to one decimal place.

Question 4

A helpful table of squares:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	4	9	16	25	36	49	64	81	100	121	144	169	196	225	256	289	324	361	400

By using the helpful table of squares, or otherwise, determine whether each of the following numbers is Rational, \mathbb{Q}, Irrational, \mathbb{P}.
(i) $\sqrt{256}$
(ii) $\sqrt{291}$
(ii) $\sqrt{10^{2}+5^{2}+10^{2}}$

Question 5

Show that each of the following is rational by writing them in the form

$$
\frac{p}{q}
$$

where p and q are integers, $q \neq 0$.
(i) $\left(\frac{7}{9}\right)^{2}$
[1 mark]
(ii) $\sqrt{\frac{100}{289}}$
(iii) $\left(3+\frac{1}{4}\right)^{2}$

Question 6

$\sqrt{5}=2.236067977 \ldots$
$\sqrt{6}=2.449489743 \ldots$
Write down a rational number that lies between $\sqrt{5}$ and $\sqrt{6}$

[2 marks]

Question 7

For each expression state if it is Rational, \mathbb{Q}, or Irrational, \mathbb{P}.
Show working where necessary.
(i) $(\sqrt{3})^{2}$
(ii) $\frac{\sqrt{20}}{\sqrt{4}}$
(iii) 1^{π}
(iv) $(\sqrt{7})^{0}$
(v) $5^{0.5}$
(vi) $\quad(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})$

Question 8

In a cuboid with sides of lengths a, b and c, the longest diagonal in the box, d, is given by a three dimensional version of Pythagoras' Theorem.

$$
d^{2}=a^{2}+b^{2}+c^{2}
$$

(i) Work out the length of the longest diagonal of a cuboid that measures 6 cm by 3 cm by 2 cm
(ii) Is your part (i) answer a rational number, \mathbb{Q}, or an irrational number, \mathbb{P} ?

Question 9

Show that 0.625 can be written in the form $\frac{p}{q}$ for $p, q \in \mathbb{Z}$ and $q \neq 0$.
Simplify your answer if it is possible to do so.

Question 10

Victor says that as $\pi=\frac{22}{7}, \pi$ must be a rational number.
Explain his error.

Question 11

List the integers, if any, which satisfy

$$
29 \leqslant 3 n+14<38
$$

Question 12

Consider the number $0 . \dot{4} \overline{5}$
That is, 0.454545454545 ...
Show how this number can be rewritten in the form $\frac{p}{q}$ for integer p and q with $q \neq 0$.
Simplify your answer if it is possible to do so.

Question 13

Show that each of the following is rational by writing them in the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$.
(i) $\left(\frac{1}{2}+\frac{1}{3}\right)^{2}$
(ii) $\sqrt{\frac{3}{5}+\frac{1}{25}}$

Question 14

Use the theorem of Pythagoras to show that a right angled triangle with shorter sides of lengths $\frac{6}{5} \mathrm{~cm}$ and $\frac{8}{5} \mathrm{~cm}$ has a hypotenuse of integer length.

Question 15

Consider the number

$$
0.0416
$$

Let $x=0.0416666666666666 \ldots .$.
(i) Work out the value of $10000 x$
(ii) Work out the value of $1000 x$
(iii) By subtracting answer (b) from answer (a) work out $9000 x$
(iv) Hence write 0.0416 in the form of a rational number.

That is, in the form $\frac{p}{q}$ for integer p and q with $q \neq 0$ Simplify your answer if it is possible to do so.

