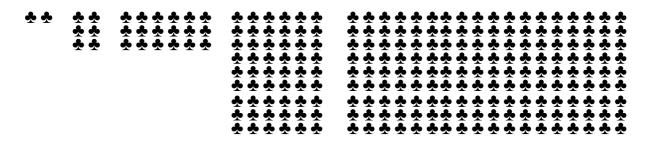


GEOMETRIC Progression S



$$\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \frac{1}{1024} + \frac{1}{4096} + \dots = \frac{1}{3}$$

Lesson 1

A-Level Pure Mathematics, Year 2 Geometric Progressions

1.1 How To Spot A Geometric Progression

Consider the sum

 $2 + 6 + 18 + 54 + 162 + \dots$

Explain why this series not an Arithmetic Progression

Ś

[1 mark]

Teaching Video : <u>http://www.NumberWonder.co.uk/v9077/1.mp4</u>

Observe that the terms are linked; each is three times the previous. This is the hallmark of a Geometric Progression. In this case it is said that the common ratio is 3

Expressed algebraically, a Geometric Progression is of the form

$$a, ar, ar^2, ar^3, ar^4, \dots$$

where *a* is the first term and *r* is the common ratio

Write down a formula for the n^{th} term, G_n of a Geometric Progression

F

[1 mark]

1.2 Example

The 5th term if a Geometric Progression is 567 and the 2nd term is 21

(i) What is the common ratio ?

[3 marks]

(ii) Write out the first 6 terms of the Geometric Progression.

[2 marks]

(iii) Determine the exact value of the 20th term.

[2 marks]

1.3 Exercise

Marks Available: 60

Question 1

Write out the first five terms of the Geometric Progression with first term 8 and common ratio 1.5

[2 marks]

Question 2

Write out the first five terms of the Geometric Progression with first term 8 and common ratio 0.5

[2 marks]

Question 3

Write out the first five terms of the Geometric Progression with first term 3 and common ratio -2

[2 marks]

Consider the following Geometric Progression;

0.3, 0.03, 0.003, 0.0003, ...

(i) State the value of the first term, a, and the value of the common ratio, r

[2 marks]

The sum of this Geometric Progression has an infinite number of terms

 $0.3 + 0.03 + 0.003 + 0.0003 + \dots$

This infinite sum has a finite answer.

(ii) Give the exact value of this "sum to infinity"

[2 marks]

Question 5

What is the exact value of the 20th term of the following Geometric Progression ?

5, 15, 45, 135, ...

[3 marks]

Question 6

The 5th term of a Geometric Progression is 3750 and the 2nd term is 30

(i) What is the common ratio ?

[3 marks]

(ii) Write out the first 6 terms of the Geometric Progression.

[2 marks]

(**iii**) Determine the exact value of the 12th term.

[2 marks]

The 6^{th} term of a Geometric Progression is 0.375 and the 3^{rd} term is – 3

(**i**) What is the common ratio ?

[3 marks]

(ii) Write out the first 6 terms of the Geometric Progression.

[2 marks]

(iii) Determine the exact value of the 20th term. Write your answer as a $\frac{p}{q}$ fraction, for integer p and q

[2 marks]

Question 8

For each of the following series state if the terms are in

- Arithmetic Progression
- Geometric Progression
- Neither Arithmetic nor Geometric Progression

(i)
$$7+3-1-5-...$$

(ii)
$$1+8+27+64+...$$

(iii)
$$0.1^3 + 0.1^5 + 0.1^7 + 0.1^9 + \dots$$

$$(iv)$$
 3 - 1 + $\frac{1}{3}$ - $\frac{1}{9}$ + ...

$$(\mathbf{v})$$
 1 - 1 + 1 - 1 + 1 - 1 + ...

[5 marks]

Determine the value of this series which is in Geometric Progression, and expressed in sigma notation

[3 marks]

Question 10

Determine the value of this series which is in Geometric Progression, and expressed in sigma notation

$$\sum_{1}^{5} 3 \times 2^{n}$$

[3 marks]

Question 11

If 3, x and 9 are the first three terms of a sequence in Geometric Progression, find (i) the possible exact values of x

[3 marks]

(ii) the possible exact values of the 4^{th} term.

[2 marks]

The 7th term of a Geometric Progression is exactly 1.9487171

and the 3rd term is exactly 1.331

(i) What is the common ratio ?

[3 marks]

(ii) Write out the first 6 terms of the Geometric Progression.

[2 marks]

(iii) Express the sum of first 40 terms of this Geometric Progression in sigma notation.

[2 marks]

Question 13

A geometric sequence has first term 4 and third term 1

Find the two possible values of the 6th term.

[4 marks]

The first three terms of a geometric sequence are given by

$$8 - x, \qquad 2x, \qquad x^2$$

respectively where x > 0

(i) Show that
$$x^3 - 4x^2 = 0$$

[2 marks]

(**ii**) Find the value of the 20^{th} term.

[3 marks]

(iii) State, with a reason, whether 4096 is a term in the sequence.

[1 mark]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk