> A-Level
> ~Year 2 ~
> Pure Mathematics
> Geometric
> Progressions


$$
\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\frac{1}{256}+\frac{1}{1024}+\frac{1}{4096}+\ldots=\frac{1}{3}
$$

## Geometric Progressions

## Lesson 1

A-Level Pure Mathematics, Year 2<br>Geometric Progressions

### 1.1 How To Spot A Geometric Progression

20


Consider the sum

$$
2+6+18+54+162+\ldots
$$

Explain why this series not an Arithmetic Progression
$1-8$
[ 1 mark ]
Teaching Video : http://www.NumberWonder.co.uk/v9077/1.mp4


Observe that the terms are linked; each is three times the previous.
This is the hallmark of a Geometric Progression.
In this case it is said that the common ratio is 3

Expressed algebraically, a Geometric Progression is of the form

$$
a, a r, a r^{2}, a r^{3}, a r^{4}, \ldots
$$

where $a$ is the first term
and $\quad r$ is the common ratio

Write down a formula for the $n^{\text {th }}$ term, $G_{n}$ of a Geometric Progression

### 1.2 Example

The $5^{\text {th }}$ term if a Geometric Progression is 567 and the $2^{\text {nd }}$ term is 21
(i) What is the common ratio?
(ii) Write out the first 6 terms of the Geometric Progression.
(iii ) Determine the exact value of the $20^{\text {th }}$ term.

### 1.3 Exercise

Marks Available: 60
Question 1
Write out the first five terms of the Geometric Progression with first term 8 and common ratio 1.5

## Question 2

Write out the first five terms of the Geometric Progression with first term 8 and common ratio 0.5

## Question 3

Write out the first five terms of the Geometric Progression with first term 3 and common ratio - 2

## Question 4

Consider the following Geometric Progression;
$0.3,0.03,0.003,0.0003, \ldots$
(i) State the value of the first term, $a$, and the value of the common ratio, $r$

The sum of this Geometric Progression has an infinite number of terms

$$
0.3+0.03+0.003+0.0003+\ldots
$$

This infinite sum has a finite answer.
( ii ) Give the exact value of this "sum to infinity"
[ 2 marks ]

## Question 5

What is the exact value of the $20^{\text {th }}$ term of the following Geometric Progression?

$$
5,15,45,135, \ldots
$$

## Question 6

The $5^{\text {th }}$ term of a Geometric Progression is 3750 and the $2^{\text {nd }}$ term is 30
(i) What is the common ratio?
( ii ) Write out the first 6 terms of the Geometric Progression.
(iii) Determine the exact value of the $12^{\text {th }}$ term.

## Question 7

The $6^{\text {th }}$ term of a Geometric Progression is 0.375 and the $3^{\text {rd }}$ term is -3
(i) What is the common ratio ?
( ii ) Write out the first 6 terms of the Geometric Progression.
(iii ) Determine the exact value of the $20^{\text {th }}$ term.
Write your answer as a $\frac{p}{q}$ fraction, for integer $p$ and $q$

## Question 8

For each of the following series state if the terms are in

- Arithmetic Progression
- Geometric Progression
- Neither Arithmetic nor Geometric Progression
(i) $7+3-1-5-\ldots$
(ii) $1+8+27+64+\ldots$
( iii ) $0.1^{3}+0.1^{5}+0.1^{7}+0.1^{9}+\ldots$
(iv ) $3-1+\frac{1}{3}-\frac{1}{9}+\ldots$
(v) $1-1+1-1+1-1+\ldots$


## Question 9

Determine the value of this series which is in Geometric Progression, and expressed in sigma notation

$$
\sum_{1}^{4} 3^{n}
$$

## Question 10

Determine the value of this series which is in Geometric Progression, and expressed in sigma notation

$$
\sum_{1}^{5} 3 \times 2^{n}
$$

## Question 11

If 3, $x$ and 9 are the first three terms of a sequence in Geometric Progression, find
(i) the possible exact values of $x$
(ii) the possible exact values of the $4^{\text {th }}$ term.

## Question 12

The $7^{\text {th }}$ term of a Geometric Progression is exactly 1.9487171
and the $3^{\text {rd }}$ term is exactly 1.331
(i) What is the common ratio?
( ii ) Write out the first 6 terms of the Geometric Progression.
( iii ) Express the sum of first 40 terms of this Geometric Progression in sigma notation.

## Question 13

A geometric sequence has first term 4 and third term 1
Find the two possible values of the $6^{\text {th }}$ term.

## Question 14

The first three terms of a geometric sequence are given by

$$
8-x, \quad 2 x, \quad x^{2}
$$

respectively where $x>0$
(i) Show that $x^{3}-4 x^{2}=0$
(ii) Find the value of the $20^{\text {th }}$ term.
( iii ) State, with a reason, whether 4096 is a term in the sequence.

## [ 1 mark ]

