A－Level Pure Mathematics，Year 2

Geometric Progressions

3．1 The Sum To Infinity

Teaching Video ：$\underline{\text { http：／／www．NumberWonder．co．uk／v9077／3a．mp4（Part 1）}}$
http：／／www．NumberWonder．co．uk／v9077／3b．mp4（Part 2 ）

Part 2 ＝＞

For a typical Arithmetic Progression．．．

$$
\begin{aligned}
7 & =7 \\
7+11 & =18 \\
7+11+15 & =33 \\
7+11+15+19 & =52
\end{aligned}
$$

Observation：

128

For a typical Geometric Progression with either $r>1$ or $r<1$ ．．．

$$
\begin{aligned}
4 & =4 \\
4+20 & =24 \\
4+20+100 & =124 \\
4+20+100+500 & =624
\end{aligned}
$$

Observation：

14

For a typical Geometric Progression with either $-1<r<1$

$$
\begin{aligned}
64 & =64 \\
64+32 & =96 \\
64+32+16 & =112 \\
64+32+16+8 & =120 \\
64+32+16+8+4 & =124
\end{aligned}
$$

Question Time！
As more terms are added，will this ever sum to more than
（i）500？【囪
（ii）200？【－
（ iii）130？【－
（iv）128？【－
（ v ）126？昰

$$
\begin{aligned}
64 & =64 \\
64+32 & =96 \\
64+32+16 & =112 \\
64+32+16+8 & =120 \\
64+32+16+8+4 & =124 \\
64+32+16+8+4+2 & =126 \\
64+32+16+8+4+2+1 & =127 \\
64+32+16+8+4+2+1+\frac{1}{2} & =127 \frac{1}{2} \\
64+32+16+8+4+2+1+\frac{1}{2}+\frac{1}{4} & =127 \frac{3}{4} \\
64+32+16+8+4+2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8} & =127 \frac{7}{8}
\end{aligned}
$$

The series is approaching a limit of 128 but never quite gets there. This series would be described as having a sum to infinity of 128 , which is the upper bound of the series, and is the smallest number this series can not sum to.

For a Geometric Progression with $-1<r<1$ it makes sense to talk about a sum to infinity because such a series is convergent on a fixed number.

3.2 The Sum To Infinity Formula For A Geometric Progression

$$
\operatorname{Sum}_{\infty}=\frac{a}{1-r} \quad-1<r<1
$$

3.3 Example

Show that 128 is the sum to infinity of the geometric series,

$$
64+32+16+\ldots
$$

3.4 Exercise

Marks Available : 46

Question 1

Find S_{∞} of the geometric series,

$$
12-6+3-1.5+\ldots
$$

[2 marks]

Question 2

A geometric series has first term -5 and sum to infinity -3
Find the common ratio.

Question 3

For the geometric series with $S_{3}=9$ and $S_{\infty}=8$, find the value of the common ratio and also the value of the first term.

Question 4

C2 Examination question from June 2009, Q5.
The third term of a geometric sequence is 324 and the sixth term is 96
(a) Show that the common ratio of the sequence is $\frac{2}{3}$
(b) Find the first term of the sequence
(c) Find the sum of the first 15 terms of the sequence
(d) Find the sum to infinity of the sequence

Question 5

C2 Examination question from January 2007, Q10
A geometric series is

$$
a+a r+a r^{2}+\ldots
$$

(a) Prove that the sum of the first n terms of this series is given by

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

(b) Find $\sum_{k=1}^{10} 100\left(2^{k}\right)$
(c) Find the sum to infinity of the geometric series

$$
\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\ldots
$$

(d) State the condition for an infinite geometric series with common ratio r to be convergent

Question 6

C2 Examination question from January 2009, Q9
The first three terms of a geometric series are

$$
(k+4), \quad k, \quad(2 k-15)
$$

where k is a positive constant.
(i) Show that $k^{2}-7 k-60=0$
(ii) Hence show that $k=12$
(iii) Find the common ratio of this series
[1 mark]
(iv) Find the sum to infinity of this series.

Question 7

C2 Examination question from January 2005, Q6
The second and fourth terms of a geometric series are 7.2 and 5.832 respectively.
The common ratio of the series is positive.

For this series, find
(a) the common ratio
(b) the first term
[2 marks]
(c) the sum of the first 50 terms, giving your answer to 3 decimal places
[2 marks]
(d) the difference between the sum to infinity and the sum of the first 50 terms, giving your answer to 3 decimal places

