# A-Level Pure Mathematics, Year 2 

Geometric Progressions

### 4.1 A Logarithm Surprise

There is a situation that routinely arise in questions about Geometric Progressions that requires an ability to use logarithms.

### 4.2 Example

Sum the following series which is in geometric progression;

$$
3+6+12+24+\ldots+49152
$$

Teaching Video : http://www.NumberWonder.co.uk/v9077/4.mp4


### 4.3 Exercise

Marks Available: 40

## Question 1

What is the first term in the following geometric progression to exceed 1 million?

$$
2,6,18,54,162, \ldots
$$

## HINT :

This is about solving $a r^{n-1}>1000000$

Question 2
What is the first term in the following geometric progression to exceed 200 ?
$0.4,0.6,0.9,1.35,2.025, \ldots$

## Question 3

Sum the following series which is in geometric progression;

$$
19683+6561+\ldots+1
$$

## [ 4 marks ]

## Question 4

A population of rabbits is increasing at a rate of $35 \%$ per annum on a large and uninhabited island with lush vegetation.
At the start of 2011 there were 40 rabbits.
In what year will the rabbit population first exceed 1000 rabbits?
HINT : Be careful about exactly what this question is asking.

## Question 5

Sum the following series which is in geometric progression;

$$
1-2+4-8+16-32+\ldots+1073741824
$$

HINT : To avoid $\ln (-2)$ and a 'math error'...

$$
\begin{gathered}
(-2)^{n-1}=1073741824 \\
(-1)^{n-1}\left(2^{n-1}\right)=1073741824 \\
(-1)^{n-1} \text { must equal } 1 \text { and } n \text { must be odd } \\
\therefore 2^{n-1}=1073741824
\end{gathered}
$$

## Question 6

C2 Examination Question, May 2006, Q9
A geometric series has first term $a$ and common ratio $r$
The second term of the series is 4 and the sum to infinity of the series is 25
( a ) Show that

$$
25 r^{2}-25 r+4=0
$$

(b) Find the two possible values of $r$
( c) Find the corresponding two possible values of $a$
( d ) Show that the sum, $S_{n}$, of the first $n$ terms of the series is given by

$$
S_{n}=25\left(1-r^{n}\right)
$$

Given that $r$ takes the larger of its two possible values,
(e) find the smallest value of $n$ for which $S_{n}$ exceeds 24

## Question 7

C2 Examination Question, June 2008, Q6
A geometric series has first term 5 and common ratio $\frac{4}{5}$
Calculate
( a ) the 20th term of the series, to 3 decimal places
(b) the sum to infinity of the series
[ 2 marks ]

Given that the sum to $k$ terms of the series is greater than 24.95
( c ) show that

$$
k>\frac{\log 0.002}{\log 0.8}
$$

(d ) find the smallest possible value of $k$

