A-Level Mathematics A-Level Further Mathematics Pure Year 1

ALGEBRA ~ Surds and Indices II ~

Algebra

~ Surds and Indices ~

Lesson 1

A-Level Pure Mathematics : Year 1 Algebra of Surds and Indices II

1.1 Multiplication Involving Surds

Challenge #1 Find the exact value of,

$$(2 + 7\sqrt{2} - 5\sqrt{3})(4 + 3\sqrt{2} + 2\sqrt{3})$$

[6 marks]

Challenge #2

Find the exact value of,

$$(3\sqrt{2} + 4\sqrt{3} + 7\sqrt{6})(5\sqrt{2} - 2\sqrt{3} + 3\sqrt{6})$$

[6 marks]

1.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

Expand and simplify, giving exact answers,

(i)
$$(5 + \sqrt{7})^2$$

[2 marks]

(ii)
$$(2+5\sqrt{3})(4-2\sqrt{3})$$

[3 marks]

(iii)
$$(3 + \sqrt{2}) (3 - \sqrt{2}) (2 + \sqrt{5})$$

[4 marks]

(iv)
$$(6+2\sqrt{3}-\sqrt{5})(7+\sqrt{3})$$

[5 marks]

A square-free number is an integer that is not divisible by any square number except 1.

(i)	Which of the following are integers ?									
	6	π .	$\sqrt{8}$	- 4	$\sqrt{25}$	0.125	$\frac{4}{5}$	<u>81</u> <u>3</u>		[1 mark]
(ii)	Which of the following are square-free ?									
	7	121	50	12	6	99		65	147	
										[2 marks]
Question 3										

Question 3

Simplify each of the following, writing your answers in the form $a\sqrt{b}$ for integer values of a and b with b square free.

(i)
$$\sqrt{8}$$

[1 mark]

(ii)
$$5\sqrt{20}$$

[1 mark]

(iii)
$$(3\sqrt{2})^3 - 4\sqrt{2}$$

[2 marks]

$$(iv)$$
 $\sqrt{12} + 3\sqrt{48} + \sqrt{75}$

[2 marks]

Show how to expand the brackets of

$$(1 + \sqrt{5}) (1 - \sqrt{5})^3$$

to obtain an answer in the form $a + b\sqrt{3}$ where a and b are integers.

[3 marks]

Question 5

Find the exact value of,

$$(5+3\sqrt{2}+6\sqrt{3})(8+4\sqrt{2}-2\sqrt{3})$$

Which of the following numbers are square free ? (i) $3 \times 5 \times 7$

(**ii**) $2 \times 3^2 \times 11$

(iii)
$$5 \times 7^3$$

[2 marks]

Question 7

Explain why,

$$\sqrt{2 \times 3^3 \times 5^2} = 15\sqrt{6}$$

[2 marks]

Question 8

Simplify,

$$\sqrt{a^3 \times b^5}$$

where *a* and *b* are unknown integers.

Give your answer in the form $x \sqrt{y}$ where x and y are expressed in terms of a and b and y is square free.

[2 marks]

Question 9

The following number is too big for my calculator;

$$5^{52} \times 7 \times 13^{95}$$

Even so, square root this number, writing the answer in in the form $a\sqrt{p}$

where a & p are integers, that may be written in index form and p is \Box FREE.

[2 marks]

Find the exact value of,

$$(7\sqrt{2} - 3\sqrt{5} + 4\sqrt{10}) (9\sqrt{2} + 2\sqrt{5} + 2\sqrt{10})$$

Without using a calculator at any stage, devise a method that will determine the cube root of 1728

i.e. $\sqrt[3]{1728}$

[4 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk