3.1 Equations Involving Surds \& Indices

Example \#1 : Index Matching

Given that

$$
81 \sqrt{3}=3^{a}
$$

find the value of a.

Example \#2 : Index Matching

Given that

$$
\left(27 x^{12}\right)^{\frac{5}{3}}=3^{a} x^{b}
$$

find the value of a and the value of b.

Example \#3 : Surd Coefficient Matching

Given that,

$$
(3+\sqrt{c})(2 \sqrt{c}-3)=1+k \sqrt{c}
$$

where c and k are prime numbers, find the value of c and the value of k

Example \#4 : Double Square Root Surds

Given that,

$$
\sqrt{10+2 \sqrt{21}}=\sqrt{a}+\sqrt{b} \quad \text { with } a<b
$$

find the value of a and the value of b, both of which are integers.
[3 marks]

3.2 Exercise

Any solution based entirely on graphical
or numerical methods is not acceptable
Marks Available : 55

Question 1

Without using a calculator, write down the value of each of the following.
Answers should be written as exact simplified rational numbers without indices.
(i) $25^{\frac{1}{2}}$
(ii) $27^{\frac{1}{3}}$
(iii) 3^{-2}
(iv) $4^{\frac{3}{2}}$
(v) $9^{-\frac{1}{2}}$
$\begin{array}{lllllll}\text { (vi) } 100^{-\frac{3}{2}} & \text { (vii) } \quad 81^{\frac{1}{4}} & \text { (viii) } 81^{\frac{3}{4}} & \text { (ix) } 81^{-\frac{1}{2}} & \text { (x) } & 81^{0}\end{array}$
[5 marks]

Question 2

Given that a, b and c are distinct prime numbers and that

$$
y=2^{5} \times 3^{4} \times 5^{3}
$$

determine the value of \sqrt{y}
Write your answer in the form $a \sqrt{b}$ where a and b are integers and b isfree.

Question 3

Without using a calculator, write down the value of each of the following. Answers should be written as simplified exact numbers without indices and with denominators that are rational.
(i) $\left(\frac{4}{7}\right)^{2}$
(ii) $\left(\frac{3}{2}\right)^{-2}$
(iii) $\left(\frac{22}{77}\right)^{0}$
(iv) $\left(\frac{3}{8}\right)^{-1}$
(v) $\quad\left(\frac{50}{32}\right)^{\frac{1}{2}}$

Question 4

Without using a calculator, write down the value of each of the following.
Answers should be written as simplified exact numbers without indices and with denominators that are rational.
(i) $\left(-\frac{16}{54}\right)^{-\frac{1}{3}}$
(ii) $\left(\frac{9}{6 \sqrt{2}}\right)^{3}$
(iii) $\left(\frac{25}{8}\right)^{\frac{1}{2}}$
(iv) $\quad\left(\frac{7+\sqrt{5}}{8}\right)^{-1}$

Question 5

Given that $8 \sqrt{2}=2^{a}$ find the value of a

Question 6

Given that,

$$
\sqrt{3+2 \sqrt{2}}=\sqrt{a}+\sqrt{b} \quad \text { with } a>b
$$

find the value of a and the value of b, showing clear reasoning to justify your answer.

Question 7

Given that,

$$
(7-\sqrt{c})(4+2 \sqrt{c})=6+k \sqrt{c}
$$

where c and k are integers and c is square free, find the value of c and the value of k

Question 8

Showing all steps in your reasoning, work out the exact value of n, given that

$$
\frac{1}{\sqrt[3]{9^{4}}}=3^{n}
$$

Question 9

Given that

$$
(a+\sqrt{5})(3+2 \sqrt{5})=31+b \sqrt{5}
$$

find the value of a and the value of b both of which are integers.

Question 10

Given that,

$$
x=\sqrt{6+2 \sqrt{5}}-\sqrt{6-2 \sqrt{5}}
$$

prove that x has the value 2 , exactly.

Question 11

Given that for some prime, p,

$$
p^{m}=\frac{1}{p \times \sqrt[3]{p^{2}}}
$$

Find the value of m

Question 12

Two composite numbers, g and h have prime number decompositions

$$
g=a^{3} \times b \times c^{2} \quad h=a \times b \times c^{3}
$$

where a, b and c are distinct prime numbers.
(a) Express $g h$ as a product of powers of its prime factors Simplify your answer
(b) Find the value of x, the value of y and the value of z given that,

$$
\frac{g}{h}=a^{x} \times b^{y} \times c^{z}
$$

Question 13

Given that,

$$
\sqrt{8-4 \sqrt{3}}=\sqrt{a}-\sqrt{b} \quad \text { with } a>b
$$

find the value of a and the value of b, both of which are integers

Question 14

GCSE Examination Question, January 2017, Paper 3H(R), Q18
Given that p is a prime number, rationalise the denominator of

$$
\frac{7 \sqrt{p}-p^{2}}{\sqrt{p^{3}}}
$$

Simplify your answer

Question 15

A-Level Examination Question, June 2019, Paper 2, Q1
Given

$$
2^{x} \times 4^{y}=\frac{1}{2 \sqrt{2}}
$$

express y as a function of x.

Question 16

Without using a calculator, and making your method clear, find the square root of

$$
2^{7} \times 3 \times 5^{4}
$$

Writing your answer in the form $a \sqrt{b}$ where a and b are integers and b isfree.

Question 17

Carefully showing your working, rationalise the denominator of,

$$
\frac{1}{1+\sqrt{2}+\sqrt{3}}
$$

