Lesson 11

A-Level Pure Mathematics: Year 2

 Differentiation IV
11.1 Revision

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

Differentiate each of the following, simplifying answers as appropriate;
(i) $y=\frac{2 x^{5}}{15}$
(ii) $y=\ln \left(2 x^{3}+7\right)$
(iii) $y=\frac{5}{4 x^{2}-3}$
(iv) $y=e^{\sqrt{x}}$

Question 2

The product rule states that $(u v)^{\prime}=u v^{\prime}+u^{\prime} v$

Use the rule to differentiate $y=7 x^{2} \cos x$

Question 3

The quotient rule states that $\left(\frac{u}{v}\right)^{\prime}=\frac{v u^{\prime}-v^{\prime} u}{v^{2}}$
Use the rule to differentiate the following, simplifying your answer;

$$
y=\frac{\ln (4 x)}{x^{2}}
$$

Question 4

(i) Use derivatives of $\sin x$ and $\cos x$ to prove the derivative of $\tan x$ is $\sec ^{2} x$
(ii) Hence, or otherwise, use the chain rule to differentiate;

$$
y=\tan ^{2} x
$$

Question 5

The graph is of the parametric equations;

$$
x=12 t-t^{3} \quad \text { and } \quad y=3 t^{2}
$$

(i) Find, in terms of t,
(a) $\frac{d x}{d t}$
(b) $\frac{d y}{d t}$
(c) $\frac{d y}{d x}$
(ii) Write down the coordinates of the point on the curve that corresponds to the parameter t having the value 1
[1 mark]
(iii) What is the gradient of the curve at your part (ii) point?
[1 mark]
(iv) By making use of your part (ii) and (iii) answers, determine the equation of the tangent to the curve from the point at which $t=1$

Question 6

A curve has equation;

$$
x^{2}+6 x y-y^{2}=90
$$

Find an expression for the gradient by means of implicit differentiation.
Write your answer in the form $\frac{d y}{d x}=f(x, y)$

Question 7
The parametric equations of a curve are;

$$
x=t^{2}+t, \quad y=t^{2}-t
$$

(i) Complete the following table by way of working out some points on the graph of this curve.

t	-4	-3	-2	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	2	3	4
x											
y											

[3 marks]
(ii) On the graph paper provided below plot the curve

(iii) Find, in terms of t, an expression for the derivative of this curve.

[4 marks]

(iv) Find, in terms of x and y an expression for the derivative of this curve.

