A-Level Pure Mathematics : Year 2 Differentiation IV

13.1 Differentiation : Later Date Revision

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Without looking up the formulae booklet, differentiate each of the following with respect to x. If you can remember a formulae book formula you can use it !
(i) $y=e^{5 x}$
(ii) $y=4 \sin 6 x$
(iii) $y=\cos ^{2} 3 x$
(iv) $y=\tan x$
(v) $y=\frac{1}{\cos x}$
(vi) $y=\ln \left(5 x^{3}\right)$
(vii) $\quad y=(\ln (5 x))^{3}$

Question 2

Use the product rule to find the derivative with respect to x of $y=3 x e^{5 x}$ giving the answer in the form $\frac{d y}{d x}=A e^{5 x}(B x+C)$ where A, B and C are integers to be found.

Question 3

Use the quotient rule to find the derivative with respect to x of $y=\frac{\sin 3 x}{2 x^{2}}$ and simplify your answer.

Question 4

Use the chain rule to find the derivative with respect to x of $y=\left(1+\cos ^{2} 3 x\right)^{5}$
Write your answer in the form $\frac{d y}{d x}=A\left(1+\cos ^{2} 3 x\right)^{B} \sin C x$ where A, B, and C are integers to be found.

Question 5

A curve is described parametrically by the equations

$$
x=t-\cos ^{2} t \quad y=\sin ^{2} t
$$

(i) Show that, $\frac{d y}{d x}=\frac{\sin 2 t}{1+\sin 2 t}$
(ii) Show that when $t=\frac{\pi}{6}, \quad \frac{d y}{d x}=m \sqrt{3}+n$ for some integer values of m and n that you should determine.

Question 6

Find the tangent to the curve $y=\sin x$ when $x=\frac{\pi}{3}$
Give your answer in the form $y=m x+c$ and give the exact value for c.

Question 7

Differentiate implicitly to find $\frac{d y}{d x}$ for the curve $4 x^{3}+5 y^{4}+7 x y=0$

