Lesson 2

A-Level Pure Mathematics: Year 2
 Differentiation IV

2.1 Parametric to Cartesian Manipulations

It may be possible to convert a pair of parametric equations into Cartesian form.

Example \#1

Consider the following parametric equations which describe an ellipse ${ }^{\dagger}$

$$
\begin{aligned}
& x=4 \sin \theta \\
& y=6 \cos \theta
\end{aligned}
$$

In this case it is possible to eliminate the parameter θ, and obtain a single equation containing only numbers and the variables x and y.

Teaching Video : http://www.NumberWonder.co.uk/v9081/2a.mp4

Example \#2

Express in the form $y^{2}=f(x)$ the following parametric equations ${ }^{\ddagger}$

$$
\begin{aligned}
& x=4 t^{2} \\
& y=16 t\left(t^{2}-1\right)
\end{aligned}
$$

Teaching Video : http://www.NumberWonder.co.uk/v9081/2b.mp4

\dagger These parametric equations were graphed in Lesson 1, Exercise 1.2, Question 3
\ddagger These parametric equations were graphed in Lesson 1, Exercise 1.2, Question 2

2.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Find an equation of the form $a x^{2}+b y^{2}=c$, where a, b and c are integer constants to be found, for the following pair of parametric equations;

$$
\begin{aligned}
& x=15 \sin \theta \\
& y=20 \cos \theta
\end{aligned}
$$

[4 marks]

Question 2

Find the Cartesian equations of each of these curves in the form $y=f(x)$
(i) $x=8 t$
(ii) $x=\frac{20}{t}$
$y=\frac{8}{t}$
$y=t^{2}$
(iii) $x=14 t$
(iv) $\quad x=t-2$
$y=7 t^{2}$

$$
y=t^{2}+3
$$

Question 3

Use trigonometric identities to find the Cartesian equations of each of these curves,
(i)

$$
\begin{aligned}
& x=2 \cos \theta \\
& y=3 \sin \theta
\end{aligned}
$$

(ii) $x=3 \sec \theta$
$y=5 \tan \theta$

Question 4

Find the Cartesian equations of each of these curves in the form $y=f(x)$
(i) $x=2+3 t$
(ii) $x=3+2 t$
$y=\frac{1}{t}$
$y=4 t^{2}-9$

Question 5

Find the Cartesian equations of the curve with parametric equations ;

$$
\begin{aligned}
& x=2 \cos \theta \\
& y=5 \sin 2 \theta
\end{aligned}
$$

Give your answer in the form $y^{2}=f(x)$
Hint : Make use of the trigonometric identity $\sin 2 \theta=2 \sin \theta \cos \theta$

Question 6

A curve C has parametric equations

$$
\begin{aligned}
& x=2 \sin \theta \\
& y=1-\cos 2 \theta
\end{aligned}
$$

Find a Cartesian equation for C in the form $y=f(x)$

