6.1 Practice Makes Progression (Homework)

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 26

Question 1

A-Level Specimen Exam Question from June 2000, Paper P3, Q4 edited (Edexcel)
A curve is given by parametric equations

$$
x=4 \sin ^{3} t, \quad y=\cos 2 t, \quad 0 \leqslant t \leqslant \frac{\pi}{4}
$$

(a) Show that $\frac{d y}{d x}=-\frac{1}{3 \sin t}$
(b) Find an equation of the normal to the curve where $t=\frac{\pi}{6}$

Question 2

A-Level Examination Question from June 2007, Paper C4, Q6 edited (Edexcel) A curve has parametric equations

$$
x=\tan ^{2} t, \quad y=\sin t, \quad 0 \leqslant t \leqslant \frac{\pi}{2}
$$

(a) Show $\frac{d y}{d x}=\frac{\cos ^{k} t}{2 \sin t}$ where k is an integer whose value is to be found
(b) Find the exact gradient of the curve at the point where $t=\frac{\pi}{4}$
[3 marks]
(c) Find a Cartesian equation of the curve in the form $y^{2}=f(x)$

Question 3

A-Level Examination Question from June 2009, Paper C4, Q5 edited (Edexcel)

The graph is of the curve with parametric equations

$$
x=2 \cos 2 t, \quad y=6 \sin t, \quad 0 \leqslant t \leqslant \frac{\pi}{2}
$$

(a) Find the gradient of the curve at the point where $t=\frac{\pi}{3}$
(b) Find a Cartesian equation of the curve in the form

$$
y=f(x), \quad-2 \leqslant x \leqslant 2
$$

