Lesson 7

A-Level Pure Mathematics : Year 2 Differentiation IV

7.1 Implicit Differentiation

The graph is of the equation $y^3 = x^2 - y$ which, although not particularly complicated, is not writable in the form y = f(x). As a consequence its not a routine task to find an expression for the gradient of this curve using the techniques studied thus far.

Implicit differentiation is a method of sweeping through an equation as it stands with a view to obtaining an expression for $\frac{dy}{dx}$ in terms of x and y.

7.2 Example

Obtain an equation of the form $\frac{dy}{dx} = f(x, y)$ for the curve $y^3 = x^2 - y$

Teaching Video: http://www.NumberWonder.co.uk/v9081/7.mp4

7.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

(i) Obtain an equation of the form $\frac{dy}{dx} = f(x, y)$ for the curve, $y^3 + 3y - x^3 - x = 130$

[5 marks]

(ii) Verify that the point P(2, 5) is on the curve.

[2 marks]

(iii) Show that the gradient at the point P(2, 5) is $\frac{1}{6}$

[2 marks]

(iv) Determine the equation of the tangent to the curve at the point *P* Give your answer in the form ax + by + c = 0 where *a*, *b* and *c* are integer constants.

[3 marks]

Question 2

Use implicit differentiation to show that $y^4 = sin(x) + sin(y)$ has the derivative $\frac{dy}{dx} = \frac{cos(x)}{4y^3 - cos(y)}$

[4 marks]

Question 3

A-Level Examination Question from January 2009, Paper C4, Q1 (Edexcel) A curve C has the equation $y^2 - 3y = x^3 + 8$

(**a**) Find $\frac{dy}{dx}$ in terms of x and y

[4 marks]

(**b**) Hence find the gradient of *C* at the point where y = 3

[3 marks]

Question 4

A-Level Examination Question from June 2006, Paper C4, Q1 (Edexcel) A curve *C* is described by the equation

$$3x^2 - 2y^2 + 2x - 3y + 5 = 0$$

Find an equation of the normal to *C* at the point (0, 1), giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

[7 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk