Lesson 7

A-Level Pure Mathematics : Year 2

Differentiation IV

7.1 Implicit Differentiation

The graph is of the equation $y^{3}=x^{2}-y$ which, although not particularly complicated, is not writable in the form $y=f(x)$. As a consequence its not a routine task to find an expression for the gradient of this curve using the techniques studied thus far.

Implicit differentiation is a method of sweeping through an equation as it stands with a view to obtaining an expression for $\frac{d y}{d x}$ in terms of x and y.

7.2 Example

Obtain an equation of the form $\frac{d y}{d x}=f(x, y)$ for the curve $y^{3}=x^{2}-y$

Teaching Video: http://www.NumberWonder.co.uk/v9081/7.mp4

7.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

(i) Obtain an equation of the form $\frac{d y}{d x}=f(x, y)$ for the curve,

$$
y^{3}+3 y-x^{3}-x=130
$$

(ii) Verify that the point $P(2,5)$ is on the curve.
(iii) Show that the gradient at the point $P(2,5)$ is $\frac{1}{6}$
(iv) Determine the equation of the tangent to the curve at the point P Give your answer in the form $a x+b y+c=0$ where a, b and c are integer constants.

Question 2

Use implicit differentiation to show that $y^{4}=\sin (x)+\sin (y)$
has the derivative $\frac{d y}{d x}=\frac{\cos (x)}{4 y^{3}-\cos (y)}$

Question 3

A-Level Examination Question from January 2009, Paper C4, Q1 (Edexcel)
A curve C has the equation $y^{2}-3 y=x^{3}+8$
(a) Find $\frac{d y}{d x}$ in terms of x and y
(b) Hence find the gradient of C at the point where $y=3$

Question 4

A-Level Examination Question from June 2006, Paper C4, Q1 (Edexcel)
A curve C is described by the equation

$$
3 x^{2}-2 y^{2}+2 x-3 y+5=0
$$

Find an equation of the normal to C at the point (0,1), giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

