Lesson 8

A-Level Pure Mathematics: Year 2

Differentiation IV

8.1 Product Rule Implicitly

The graph is of the equation

$$
4 x^{2} y^{3}=4+x^{2}-y^{2}
$$

The equation is a tangle of x and y, each varying and depending on the other.
To find the gradient of this curve will require implicit differentiation but the term on the left hand side is a product.
Full marks for thinking "No problem, I can use the product rule" !

The Product Rule

$$
\text { If } f=u v \text { then } f^{\prime}=u v^{\prime}+u^{\prime} v
$$

8.2 Example

Obtain an equation of the form $\frac{d y}{d x}=f(x, y)$ for the curve $4 x^{2} y^{3}=4+x^{2}-y^{2}$

Teaching Video: http://www.NumberWonder.co.uk/v9081/8.mp4

8.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 70

Question 1

(i) Obtain an equation of the form $\frac{d y}{d x}=f(x, y)$ for the curve,

$$
3 x^{2} y=4 x-y^{3}
$$

(ii) Verify that the point $Q(1,1)$ is on the curve.
(iii) Show that the gradient at the point $Q(1,1)$ is $-\frac{1}{3}$
(iv) Determine the equation of the tangent to the curve at the point P Give your answer in the form $a x+b y+c=0$ where a, b and c are integer constants.

Question 2

The graph is of the equation

$$
2 x y=y^{3}+2 x-3 x^{2}
$$

(i) Obtain an equation of the form $\frac{d y}{d x}=f(x, y)$ for the curve,

$$
2 x y=y^{3}+2 x-3 x^{2}
$$

(ii) From scrutiny of the graph it looks as if $R(-2,2)$ is a point with integer coordinates that is on the graph.
Verify that $R(-2,2)$ is indeed on the curve.
(iii) From looking at the graph, find another point with integer coordinates other than $(0,0)$ that is on the curve.
Use mathematics to verify that your point is indeed on the curve.
[3 marks]
(iv) Find the gradient at your part (iii) point.
[2 marks]
(v) Determine the equation of the tangent to the curve at your part (iii) point.
(vi) Draw your tangent onto the graph, paying particular attention to where it crosses the y-axis.

Question 3

A-Level Examination Question from January 2012, Paper C4, Q1 (Edexcel) The curve C has the equation

$$
2 x+3 y^{2}+3 x^{2} y=4 x^{2}
$$

The point P on the curve has coordinates $(-1,1)$
(a) Find the gradient of the curve at P

[5 marks]

(b) Hence find the equation of the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Question 4

A-Level Examination question from January 2006, Paper C4, Q1 (Edexcel)
The curve C is described by the equation

$$
3 x^{2}+4 y^{2}-2 x+6 x y-5=0
$$

Find an equation of the tangent to C at the point ($1,-2$), giving your answer in the form $a x+b y+c=0$, where a, b and c are integers

Question 5

A-Level Examination Question from June 2005, Paper C4, Q2 (Edexcel)
A curve C has equation

$$
x^{2}+2 x y-3 y^{2}+16=0
$$

Find the coordinates of the points on the curve where $\frac{d y}{d x}=0$

Question 6

A-Level Examination Question from January 2008, Paper C4, Q5 (Edexcel) A curve C is described by the equation

$$
x^{3}-4 y^{2}=12 x y
$$

(a) Find the coordinates of the two points on the curve where $x=-8$
(b) Find the gradient of the curve at each of these points

Question 7

A-Level Examination Question from June 2008, Paper C4, Q4 (Edexcel)
A curve has equation

$$
3 x^{2}-y^{2}+x y=4
$$

The points P and Q lie on the curve.
The gradient of the tangent to the curve is $\frac{8}{3}$ at P and at Q
(a) Use implicit differentiation to show that $y-2 x=0$ at P and at Q

[6 marks]

(b) Find the coordinates of P and Q
[3 marks]

