10.1 Pre or Post Multiply ?

The non-commutative nature of matrix algebra demands care when multiplying both sides of a matrix equation. Suppose that \mathbf{A}, \mathbf{B}, and \mathbf{C} are known matrices, with \mathbf{X} being the unknown matrix to be found in terms of \mathbf{A}, \mathbf{B} and \mathbf{C} and that,

$$
\mathbf{A X B}=\mathbf{C}
$$

There is no concept of "Matrix Division", so any idea of dividing both sides by $\mathbf{A B}$ is not going to end well. However, use can be made of the inverse matrices of the known matrices and the "Do Nothing" Identity matrix I.

$$
\begin{aligned}
\mathbf{A X B} & =\mathbf{C} & & \\
\mathbf{A}^{-1} \mathbf{A X B} & =\mathbf{A}^{-1} \mathbf{C} & & \text { Pre-multiply both sides by } \mathbf{A}^{-1} \\
\mathbf{X B} & =\mathbf{A}^{-1} \mathbf{C} & & \text { As } \mathbf{A}^{-1} \mathbf{A}=\mathbf{I} \\
\mathbf{X B} \mathbf{B}^{-1} & =\mathbf{A}^{-1} \mathbf{C} \mathbf{B}^{-1} & & \text { Post-multiply both sides by } \mathbf{B}^{-1} \\
\mathbf{X} & =\mathbf{A}^{-1} \mathbf{C} \mathbf{B}^{-1} & & \text { As } \mathbf{B} \mathbf{B}^{-1}=\mathbf{I}
\end{aligned}
$$

Sometimes "Pre-multiply" is called "Left-multiply" or "Front-multiply" Similarly "Post-multiply" is also called "Right-multiply" or "Back-multiply"

10.2 A Pre-Multiply, Post-Multiply Example

(i) Given that $\mathbf{A B C}=\mathbf{I}$, prove that $\mathbf{B}^{-1}=\mathbf{C A}$
(ii) Given that $\mathbf{A}=\left(\begin{array}{rr}0 & 1 \\ -1 & -6\end{array}\right)$ and $\mathbf{C}=\left(\begin{array}{rr}2 & 1 \\ -3 & -1\end{array}\right)$, find \mathbf{B}

Teaching Video : http://www.NumberWonder.co.uk/v9090/10a.mp4 (Part 1)
http://www.NumberWonder.co.uk/v9090/10b.mp4 (Part 2)

<= Part 1
Part 2 =>

[4, 4 marks]

10.3 Exercise

Question 1

Further A-Level Examination Question from May 2017, IAL, FP1, Q2 (Edexcel)

$$
\mathbf{A}=\left(\begin{array}{rr}
2 & -1 \\
4 & 3
\end{array}\right), \quad \mathbf{P}=\left(\begin{array}{rr}
3 & 6 \\
11 & -8
\end{array}\right)
$$

(a) Find \mathbf{A}^{-1}

The transformation represented by the matrix \mathbf{B} followed by the transformation represented by the matrix \mathbf{A} is equivalent to the transformation represented by the matrix \mathbf{P}.
(b) Find \mathbf{B}, giving your answer in its simplest form.

Question 2

Further A-Level Examination Question from January 2012, IAL, FP1, Q8 (Edexcel)

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right)
$$

(a) Show that \mathbf{A} is non-singular
(b) Find \mathbf{B} such that $\mathbf{B} \mathbf{A}^{2}=\mathbf{A}$

Question 3

(i) Given that $\mathbf{A X B A}=\mathbf{I}$, prove that $\mathbf{X}^{-1}=\mathbf{B A A}$

[4 marks]
(ii) Given that $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{rr}2 & 1 \\ -3 & -1\end{array}\right)$, find \mathbf{X}

Question 4

$$
\mathbf{S}=\left(\begin{array}{ll}
2 & 4 \\
1 & 3
\end{array}\right) \text { and } \mathbf{B}^{-1}=\left(\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right)
$$

(a) Work out,
(i) S^{-1}
(ii) B
(iii) BS
(iv) $\quad(\mathbf{B S})^{-1}$
(b) Verify the quotable result that if \mathbf{B} and \mathbf{S} are non-singular matrices then the LHS of $\mathbf{S}^{-1} \mathbf{B}^{-1}=(\mathbf{B S})^{-1}$ is equal to its RHS.
(c) If \mathbf{S} represents "putting on socks" and \mathbf{B} represents "putting on boots" interpret what the result $(\mathbf{B S})^{-1}=\mathbf{S}^{-1} \mathbf{B}^{-1}$ represents.

Question 5

Further A-Level Examination Question from May 2018, IAL, F1, Q4 (Edexcel)
$\mathbf{A}=\left(\begin{array}{cc}2 p & 3 q \\ 3 p & 5 q\end{array}\right) \quad$ where p and q are non-zero real constants
(a) Find \mathbf{A}^{-1} in terms of p and q

Given $\mathbf{X A}=\mathbf{B}$, where $\mathbf{B}=\left(\begin{array}{cc}p & q \\ 6 p & 11 q \\ 5 p & 8 q\end{array}\right)$
(b) find the matrix \mathbf{X}, giving your answer in its simplest form.

