Lesson 10

Further A-Level Pure Mathematics : Core 1 Matrix Transformations

10.1 Pre or Post Multiply ?

The non-commutative nature of matrix algebra demands care when multiplying both sides of a matrix equation. Suppose that **A**, **B**, and **C** are known matrices, with **X** being the unknown matrix to be found in terms of **A**, **B** and **C** and that,

$\mathbf{AXB} = \mathbf{C}$

There is no concept of "Matrix Division", so any idea of dividing both sides by **AB** is not going to end well. However, use can be made of the inverse matrices of the known matrices and the "Do Nothing" Identity matrix **I**.

$$AXB = C$$

$$A^{-1}AXB = A^{-1}C$$

$$XB = A^{-1}C$$

$$XB = A^{-1}C$$

$$As A^{-1}A = I$$

$$XB B^{-1} = A^{-1}CB^{-1}$$

$$As B B^{-1} = I$$

$$X = A^{-1}CB^{-1}$$

$$As B B^{-1} = I$$

Sometimes "Pre-multiply" is called "Left-multiply" or "Front-multiply" Similarly "Post-multiply" is also called "Right-multiply" or "Back-multiply"

10.2 A Pre-Multiply, Post-Multiply Example

(i) Given that
$$ABC = I$$
, prove that $B^{-1} = CA$

(ii) Given that
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & -6 \end{pmatrix}$$
 and $\mathbf{C} = \begin{pmatrix} 2 & 1 \\ -3 & -1 \end{pmatrix}$, find **B**

Teaching Video : <u>http://www.NumberWonder.co.uk/v9090/10a.mp4</u> (Part 1) <u>http://www.NumberWonder.co.uk/v9090/10b.mp4</u> (Part 2)

<= Part 1

10.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Further A-Level Examination Question from May 2017, IAL, FP1, Q2 (Edexcel)

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix}, \quad \mathbf{P} = \begin{pmatrix} 3 & 6 \\ 11 & -8 \end{pmatrix}$$

 (\mathbf{a}) Find \mathbf{A}^{-1}

[2 marks]

The transformation represented by the matrix \mathbf{B} followed by the transformation represented by the matrix \mathbf{A} is equivalent to the transformation represented by the matrix \mathbf{P} .

(**b**) Find **B**, giving your answer in its simplest form.

Further A-Level Examination Question from January 2012, IAL, FP1, Q8 (Edexcel)

$$\mathbf{A} = \left(\begin{array}{cc} 0 & 1\\ 2 & 3 \end{array}\right)$$

(**a**) Show that **A** is non-singular

[2 marks]

(**b**) Find **B** such that $\mathbf{B}\mathbf{A}^2 = \mathbf{A}$

[4 marks]

(i) Given that $\mathbf{A}\mathbf{X}\mathbf{B}\mathbf{A} = \mathbf{I}$, prove that $\mathbf{X}^{-1} = \mathbf{B}\mathbf{A}\mathbf{A}$

[4 marks]

(ii) Given that
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2 & 1 \\ -3 & -1 \end{pmatrix}$, find \mathbf{X}

[4 marks]

$$\mathbf{S} = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \text{ and } \mathbf{B}^{-1} = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix}$$

(a) Work out,
(i) \mathbf{S}^{-1} (ii) \mathbf{B}
(iii) \mathbf{B}

[8 marks]

(**b**) Verify the quotable result that if **B** and **S** are non-singular matrices then the LHS of $\mathbf{S}^{-1}\mathbf{B}^{-1} = (\mathbf{BS})^{-1}$ is equal to its RHS.

[3 marks]

(c) If S represents "putting on socks" and B represents "putting on boots" interpret what the result $(BS)^{-1} = S^{-1}B^{-1}$ represents.

[2 marks]

,

Further A-Level Examination Question from May 2018, IAL, F1, Q4 (Edexcel)

$$\mathbf{A} = \begin{pmatrix} 2p & 3q \\ 3p & 5q \end{pmatrix} \quad \text{where } p \text{ and } q \text{ are non-zero real constants}$$
$$(\mathbf{a}) \quad \text{Find } \mathbf{A}^{-1} \text{ in terms of } p \text{ and } q$$

[3 marks]

Given
$$\mathbf{XA} = \mathbf{B}$$
, where $\mathbf{B} = \begin{pmatrix} p & q \\ 6p & 11q \\ 5p & 8q \end{pmatrix}$

find the matrix **X**, giving your answer in its simplest form. (**b**)

[4 marks]

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk