### Lesson 2

### Further A-Level Pure Mathematics : Core 1 Matrix Transformations

### 2.1 Point Transformations

A square matrix of size  $2 \times 2$  can be thought of as a transformation that moves a point on a two dimensional surface to a different location on that surface. This is an application of what is termed "matrix multiplication". This is a completely new type of mathematical operation, and the word "multiplication" is given a new meaning in the context of manipulating matrices. The rule for performing matrix multiplication with a  $2 \times 2$  matrix on a point is now given;

### Point Transformation by a Matrix (Two Dimensions)

The point (x, y) is written  $\begin{pmatrix} x \\ y \end{pmatrix}$  and placed right of the transforming matrix.  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$ 

The point (x, y) has been transformed to the point (ax + by, cx + dy)

### 2.2 Four Practice Questions

Use the above rule to transform the given point. Once done, check your answers with those over the page

(i) 
$$\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 (ii)  $\begin{pmatrix} 4 & -1 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ 

$$(1,3) \rightarrow ($$
 ,  $)$   $(3,5) \rightarrow ($  ,  $)$ 

(iii) 
$$\begin{pmatrix} 7 & 4 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 (iv)  $\begin{pmatrix} 4 & -1 \\ -8 & 5 \end{pmatrix} \begin{pmatrix} -3 \\ 5 \end{pmatrix}$ 

 $(2, -3) \to ($  , )  $(-3, 5) \to ($  , )

[ 8 marks ]

### 2.3 Practice Question's Answers

(i) 
$$\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \times 1 + 3 \times 3 \\ 4 \times 1 + 1 \times 3 \end{pmatrix} = \begin{pmatrix} 11 \\ 7 \end{pmatrix}$$
  
 $\therefore (1, 3) \rightarrow (11, 7)$ 

(ii) 
$$\begin{pmatrix} 4 & -1 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 4 \times 3 + (-1) \times 5 \\ 6 \times 3 + 2 \times 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 28 \end{pmatrix}$$
  
 $\therefore (3, 5) \rightarrow (7, 28)$ 

(iii) 
$$\begin{pmatrix} 7 & 4 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 7 \times 2 + 4 \times (-3) \\ 5 \times 2 + 3 \times (-3) \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
  
$$\therefore \quad (2, -3) \rightarrow (2, 1)$$

(iv) 
$$\begin{pmatrix} 4 & -1 \\ -8 & 5 \end{pmatrix} \begin{pmatrix} -3 \\ 5 \end{pmatrix} = \begin{pmatrix} 4 \times (-3) + (-1) \times 5 \\ (-8) \times (-3) + 5 \times 5 \end{pmatrix} = \begin{pmatrix} -17 \\ 49 \end{pmatrix}$$
  
 $\therefore \quad (-3, 5) \rightarrow (-17, 49)$ 

#### 2.4 Exercise

### Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

**Question 1** 

Determine where each of the following points are moved to by the given matrix.

(i)  $\begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix}$  (ii)  $\begin{pmatrix} 4 & 3 \\ 5 & -2 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix}$ 

$$(7,4) \rightarrow (\ ,\ ) \qquad (6,1) \rightarrow (\ ,\ )$$
$$(iii) \qquad \begin{pmatrix} -7 & 3 \\ 6 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -5 \end{pmatrix} \qquad (iv) \qquad \begin{pmatrix} 5 & -4 \\ -6 & 2 \end{pmatrix} \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

 $(2, -5) \to ($  , )  $(-3, 1) \to ($  , )

[8 marks]

### [8 marks]

# **Question 2**

Given that,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + 4y \\ 3x - y \end{pmatrix}$$

State the values of *a*, *b*, *c* and *d* 

[4 marks]

# Question 3

Given that,

$$5 \quad p \\ -6 \quad p \left( \begin{array}{c} -3 \\ p \end{array} \right) = \left( \begin{array}{c} 2p \\ -9p \end{array} \right)$$

Find the value of p

[4 marks]

### **Question 4**

Prove that any point on the line y = x remains on the line y = x when it is transformed by the matrix  $\mathbf{M} = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$ 

HINT : Let a generalised point on y = x be (p, p) and work out  $\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} p \\ p \end{pmatrix}$ 

[4 marks]

# **Question 5**

A square has vertices ( 5, 0 ), ( 7, 1 ), ( 6, 3 ) and ( 4, 2 )

It is to be transformed by the matrix  $\mathbf{M} = \begin{pmatrix} 2 & -3 \\ 1 & 2 \end{pmatrix}$ 



(i) Move each point by **M** and plot the resulting shape on the graph.

[5 marks]

(ii) Work out the area of the original square.

[1 marks]

(iii) Work out the area of the transformed shape.

[ 2 marks ]

(iv) There is a connecting between | M | and the areas of the two shapes. Guess what this might be !

[ 2 marks ]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk