Lesson 2

Further A-Level Pure Mathematics: Core 1
 Matrix Transformations

2.1 Point Transformations

A square matrix of size 2×2 can be thought of as a transformation that moves a point on a two dimensional surface to a different location on that surface. This is an application of what is termed "matrix multiplication". This is a completely new type of mathematical operation, and the word "multiplication" is given a new meaning in the context of manipulating matrices. The rule for performing matrix multiplication with a 2×2 matrix on a point is now given;

Point Transformation by a Matrix (Two Dimensions)

The point (x, y) is written $\binom{x}{y}$ and placed right of the transforming matrix.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

The point (x, y) has been transformed to the point $(a x+b y, c x+d y)$

2.2 Four Practice Questions

Use the above rule to transform the given point.
Once done, check your answers with those over the page
(i) $\quad\left(\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right)\binom{1}{3}$
(ii) $\quad\left(\begin{array}{rr}4 & -1 \\ 6 & 2\end{array}\right)\binom{3}{5}$

$$
(1,3) \rightarrow(\quad, \quad(3,5) \rightarrow(\quad, \quad)
$$

(iii) $\quad\left(\begin{array}{ll}7 & 4 \\ 5 & 3\end{array}\right)\binom{2}{-3}$
(iv) $\quad\left(\begin{array}{rr}4 & -1 \\ -8 & 5\end{array}\right)\binom{-3}{5}$

$$
(2,-3) \rightarrow(\quad, \quad) \quad(-3,5) \rightarrow(\quad, \quad)
$$

2.3 Practice Question's Answers

(i) $\quad\left(\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right)\binom{1}{3}=\binom{2 \times 1+3 \times 3}{4 \times 1+1 \times 3}=\binom{11}{7}$

$$
\therefore(1,3) \rightarrow(11,7)
$$

(ii) $\quad\left(\begin{array}{rr}4 & -1 \\ 6 & 2\end{array}\right)\binom{3}{5}=\binom{4 \times 3+(-1) \times 5}{6 \times 3+2 \times 5}=\binom{7}{28}$

$$
\therefore(3,5) \rightarrow(7,28)
$$

(iii) $\quad\left(\begin{array}{rr}7 & 4 \\ 5 & 3\end{array}\right)\binom{2}{-3}=\binom{7 \times 2+4 \times(-3)}{5 \times 2+3 \times(-3)}=\binom{2}{1}$

$$
\therefore(2,-3) \rightarrow(2.1)
$$

(iv) $\quad\left(\begin{array}{rr}4 & -1 \\ -8 & 5\end{array}\right)\binom{-3}{5}=\binom{4 \times(-3)+(-1) \times 5}{(-8) \times(-3)+5 \times 5}=\binom{-17}{49}$
$\therefore(-3,5) \rightarrow(-17,49)$

2.4 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

Determine where each of the following points are moved to by the given matrix.
(i) $\quad\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right)\binom{7}{4}$
(ii) $\quad\left(\begin{array}{rr}4 & 3 \\ 5 & -2\end{array}\right)\binom{6}{1}$
$(7,4) \rightarrow(\quad, \quad)$
$(6,1) \rightarrow(\quad, \quad)$
(iii) $\quad\left(\begin{array}{rr}-7 & 3 \\ 6 & -1\end{array}\right)\binom{2}{-5}$
(iv) $\quad\left(\begin{array}{rr}5 & -4 \\ -6 & 2\end{array}\right)\binom{-3}{1}$

$$
(2,-5) \rightarrow(\quad, \quad) \quad(-3,1) \rightarrow(\quad, \quad)
$$

Question 2

Given that,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{2 x+4 y}{3 x-y}
$$

State the values of a, b, c and d

Question 3

Given that,

$$
\left(\begin{array}{rr}
5 & p \\
-6 & p
\end{array}\right)\binom{-3}{p}=\binom{2 p}{-9 p}
$$

Find the value of p

Question 4

Prove that any point on the line $y=x$ remains on the line $y=x$ when it is
transformed by the matrix $\mathbf{M}=\left(\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right)$
HINT : Let a generalised point on $y=x$ be (p, p) and work out $\left(\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right)\binom{p}{p}$

Question 5

A square has vertices $(5,0),(7,1),(6,3)$ and $(4,2)$
It is to be transformed by the matrix $\mathbf{M}=\left(\begin{array}{rr}2 & -3 \\ 1 & 2\end{array}\right)$

(i) Move each point by \mathbf{M} and plot the resulting shape on the graph.
(ii) Work out the area of the original square.
(iii) Work out the area of the transformed shape.

[2 marks]

(iv) There is a connecting between $|\mathbf{M}|$ and the areas of the two shapes. Guess what this might be !

