3.1 The Multipoint Matrix

A square has vertices $(3,2),(6,1),(5,-2)$ and (2, - 1)
(i) Write the square's vertices as a multipoint matrix. and transform it with \mathbf{M}
(ii) Transform the square's vertices using the matrix $\mathbf{M}=\left(\begin{array}{rr}1 & 4 \\ 2 & -1\end{array}\right)$
(iii) Add a plot of the transformed shape to the graph below.
Teaching Video : http://www.NumberWonder.co.uk/v9090/3.mp4

[1, 4, 1 marks]
Note : The determinant of \mathbf{M} is a negative number, -9
The magnitude of $\operatorname{det} \mathbf{M}$ is 9 : the Area Scale Factor of the transformation.

3.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available : 30

Question 1

A kite has vertices (5,-2), (6, -5), (3,-6) and ($-2,-1$)
(i) Write the kite's vertices as a multipoint matrix.
(ii) Transform the kite's vertices using the matrix $\mathbf{M}=\left(\begin{array}{rr}-2 & 0 \\ 0 & -2\end{array}\right)$
(iii) Add a plot of the transformed shape to the graph below.
(iv) What is the area scale factor of the transformation?

Question 2

A parallelogram has vertices $(1,-2),(4,1),(4,4)$ and $(1,1)$
(i) Write the parallelogram's vertices as a multipoint matrix.
(ii) Transform the parallelogram's vertices using the matrix $\mathbf{M}=\left(\begin{array}{rr}1 & -2 \\ -2 & 1\end{array}\right)$
(iii) Add a plot of the transformed shape to the graph below.
(iv) Find the magnitude of $\operatorname{det} \mathbf{M}$ and explain what it tells you about the transformation.

[1, 4, 1, 1 marks]

Question 3

This question is about working out the following matrix multiplication,

$$
\left(\begin{array}{rrr}
5 & -1 & 6 \\
8 & 3 & -4
\end{array}\right) \times\left(\begin{array}{rrrr}
2 & 9 & 1 & -6 \\
-3 & 12 & -5 & 7 \\
4 & -2 & 0 & 11
\end{array}\right)
$$

Here is the multiplication grid already set up,

$$
\left.\frac{}{} \quad \left\lvert\, \begin{array}{rrrr}
2 & 9 & 1 & -6 \\
-3 & 12 & -5 & 7 \\
4 & -2 & 0 & 11
\end{array}\right.\right) \mid
$$

And here is how the 21 and the (-71) were found:

- In the product matrix, the 21 came from, $5 \times 9+(-1) \times 12+6 \times(-2)$
- In the product matrix, the (-71) came from, $8 \times(-6)+3 \times 7+(-4) \times 11$

Complete the matrix multiplication grid.

Question 4

Further A-Level Examination Question from January 2015, IAL, F1, Q6 (ii) (Edexcel)

$$
\mathbf{M}=\left(\begin{array}{rr}
2 k+5 & -4 \\
1 & k
\end{array}\right) \text { where } k \text { is a real number }
$$

Show that $\operatorname{det} \mathbf{M} \neq 0$ for all values of k

Question 5

Further A-Level Examination Question from January 2014, IAL, F1, Q2 (Edexcel)
(i) $\mathbf{A}=\left(\begin{array}{rr}-4 & 10 \\ -3 & k\end{array}\right)$ where k is a constant.
The triangle T is transformed to the triangle T^{\prime} by the transformation represented by \mathbf{A}

Given that the area of triangle T^{\prime} is twice the area of triangle T, find the possible values of k
(ii) Given that,

$$
\mathbf{B}=\left(\begin{array}{rrr}
1 & -2 & 3 \\
-2 & 5 & 1
\end{array}\right) \quad \mathbf{C}=\left(\begin{array}{rr}
2 & 8 \\
0 & 2 \\
1 & -2
\end{array}\right)
$$

find $\mathbf{B C}$

