Lesson 4

Further A-Level Pure Mathematics: Core 1

Matrix Transformations

4.1 The Unit Square

Faced with an unfamiliar 2×2 transformation matrix, one way to investigate its properties is to apply it to a unit square.
Written as a multipoint matrix the unit square to use is, $\mathbf{U}=\left(\begin{array}{cccc}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$ which is visualised as,

Consider the matrix, $\mathbf{M}=\left(\begin{array}{rr}-2 & 0 \\ 0 & -2\end{array}\right)$ used in Exercise 3.2, Question 1.

The transformation can be seen to be a rotation of 180° about the origin and an enlargement of Length Scale Factor 2.
The Area Scale Factor is 4 , which is also given by $\operatorname{det} \mathbf{M}=+4$.
The + sign indicates that the orientation is unchanged. In both the original shape and the image the colours go red, green, purple, blue in anticlockwise order.

4.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available :50

Question 1

A matrix, \mathbf{N}, is used as a transformation, where $\mathbf{N}=\left(\begin{array}{rr}-2 & -2 \\ -2 & 2\end{array}\right)$
(i) Apply \mathbf{N} to the unit square and plot the resulting shape on the graph below.

[3 marks]
(ii) Calculate the determinant of \mathbf{N}
(iii) Explain carefully what the sign of the determinant tells you about the transformation, \mathbf{N}
[2 marks]
(iv) What is the Length Scale Factor of the transformation?
[1 mark]
(v) What is the Area Scale Factor of the transformation?

Question 2

Complete the following,
Ask your teacher to check your answers as it's important to get these correct !

A Catalogue of Two-Dimensional Transformations

$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

| | $\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$ |
| :--- | :--- | :--- |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}0 & \\ 0 & \end{array}\right.$ |

Description :
$\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$

	$\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$	
$\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{l}0 \\ 0\end{array}\right.$	

Description :

$$
\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

	$\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$
$\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{l}0 \\ 0\end{array}\right.$

Description :

$\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
$\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$
$\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$

0 \& \& \end{array}\right)\left($$
\begin{array}{ll} \\
\hline\end{array}
$$\right.\)

Description :
$\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$

	$\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$
$\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{lll}0 & & \\ 0 & & \end{array}\right.$

Description :
$\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$

	$\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$
$\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{ll}0 & \\ 0 & \\ \hline\end{array}\right.$

Description :

$\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$
$\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$
$\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$

0\end{array}\right]\).

Description :
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

	$\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & \\ 0 & \\ \hline\end{array}\right)$

Description :

[3 marks each $=\mathbf{2 4}$ marks total]

Question 3

Further A-Level Examination Question from May 2016, FP1, Q1 (Edexcel)
Given that k is a real number and that,

$$
\mathbf{A}=\left(\begin{array}{rr}
1+k & k \\
k & 1-k
\end{array}\right)
$$

find the exact values of k for which \mathbf{A} is a singular matrix.
Give your answers in their simplest form.

Question 4

Further A-Level Examination Question from January 2011, FP1, Q2 (Edexcel)

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 0 \\
5 & 3
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{rr}
-3 & -1 \\
5 & 2
\end{array}\right)
$$

(a) Find AB
[3 marks]

Given that,

$$
\mathbf{C}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

(b) describe fully the geometrical transformation represented by \mathbf{C}
(c) write down \mathbf{C}^{100}

Question 5

Further A-Level Examination Question from June 2011, FP1, Q3 (Edexcel)
(a) Given that $\mathbf{A}=\left(\begin{array}{rr}1 & \sqrt{2} \\ \sqrt{2} & -1\end{array}\right)$
(i) find A^{2}
[3 marks]
(ii) describe fully the geometrical transformation represented by \mathbf{A}^{2}
[1 mark]
(b) Given that $\quad \mathbf{B}=\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$
describe fully the geometrical transformation represented by \mathbf{B}
[2 marks]
(c) Given that $\mathbf{C}=\left(\begin{array}{rr}k+1 & 12 \\ k & 9\end{array}\right)$
where k is a constant, find the value of k for which the matrix \mathbf{C} is singular

