#### Lesson 4

### Further A-Level Pure Mathematics : Core 1 Matrix Transformations

#### 4.1 The Unit Square

Faced with an unfamiliar  $2 \times 2$  transformation matrix, one way to investigate its properties is to apply it to a unit square.

Written as a multipoint matrix the unit square to use is,  $\mathbf{U} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ 

which is visualised as,



Consider the matrix, 
$$\mathbf{M} = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$$
 used in Exercise 3.2, Question 1



The transformation can be seen to be a rotation of  $180^{\circ}$  about the origin and an enlargement of Length Scale Factor 2.

The Area Scale Factor is 4, which is also given by  $det \mathbf{M} = +4$ .

The + sign indicates that the orientation is unchanged. In both the original shape and the image the colours go red, green, purple, blue in anticlockwise order.

### 4.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

# **Question 1**

A matrix, **N**, is used as a transformation, where **N** =  $\begin{pmatrix} -2 & -2 \\ -2 & 2 \end{pmatrix}$ 

(i) Apply N to the unit square and plot the resulting shape on the graph below.



## [ 3 marks ]

(ii) Calculate the determinant of N

| ( iii )       | Explain carefully what the sign of the determinant tells you about the transformation, $\mathbf{N}$ | [ 1 mark ]  |
|---------------|-----------------------------------------------------------------------------------------------------|-------------|
| ( <b>iv</b> ) | What is the Length Scale Factor of the transformation ?                                             | [ 2 marks ] |
| ( <b>v</b> )  | What is the Area Scale Factor of the transformation ?                                               | [ 1 mark ]  |

# **Question 2**

Complete the following,

Ask your teacher to check your answers as it's important to get these correct !









Description :

$$\left(\begin{array}{ccc}
1 & 0\\
0 & -1
\end{array}\right)$$

$$\left(\begin{array}{cccc}
0 & 1 & 1 & 0\\
0 & 0 & 1 & 1
\end{array}\right)$$

$$\left(\begin{array}{cccc}
1 & 0\\
0 & -1
\end{array}\right)$$

$$\left(\begin{array}{cccc}
0 \\
0
\end{array}\right)$$

Description :



Description :











-2

2

2

x

x

## **Question 3**

*Further A-Level Examination Question from May 2016, FP1, Q1 (Edexcel)* Given that *k* is a real number and that,

$$\mathbf{A} = \left(\begin{array}{cc} 1+k & k\\ k & 1-k \end{array}\right)$$

find the exact values of k for which **A** is a singular matrix. Give your answers in their simplest form.

[ 3 marks ]

## **Question 4**

Further A-Level Examination Question from January 2011, FP1, Q2 (Edexcel)

$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 5 & 3 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} -3 & -1 \\ 5 & 2 \end{pmatrix}$$

(a) Find AB

[ 3 marks ]

Given that,

$$\mathbf{C} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$$

(**b**) describe fully the geometrical transformation represented by **C** 

[ 2 marks ]

(c) write down  $C^{100}$ 

#### **Question 5**

Further A-Level Examination Question from June 2011, FP1, Q3 (Edexcel)

(**a**) Given that 
$$\mathbf{A} = \begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{2} & -1 \end{pmatrix}$$
  
(**i**) find  $\mathbf{A}^2$ 

### [ 3 marks ]

(ii) describe fully the geometrical transformation represented by  $A^2$ 

### [1 mark]

(**b**) Given that  $\mathbf{B} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ 

describe fully the geometrical transformation represented by **B** 

### [ 2 marks ]

(c) Given that 
$$\mathbf{C} = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}$$

where k is a constant, find the value of k for which the matrix C is singular

[3 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk