Lesson 6

Further A-Level Pure Mathematics : Core 1 Matrix Transformations

6.1 Generalised Rotation

The rotation matrices looked at previously are special cases of a more general result,

Rotation through angle θ about (0, 0) $\mathbf{R}_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Proof

Let the matrix that causes rotation of θ° about the origin be $\mathbf{R}_{\theta} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Consider what this matrix does to the unit square, $\mathbf{U} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$

$\mathbf{R}_{ heta}\mathbf{U}$			$\left(\begin{array}{c}0\\0\end{array}\right)$	1 0	1 1	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
(a c	$\begin{pmatrix} b \\ d \end{pmatrix}$	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	a c	$\begin{array}{c}a+b\\c+d\end{array}$	$\begin{pmatrix} b \\ d \end{pmatrix}$

Thus, under the rotation of $\theta^{\circ}(1, 0) \rightarrow (a, c)$ and $(0, 1) \rightarrow (b, d)$

From the diagram, the green triangle has hypotenuse 1, opposite *c* and adjacent *a* Applying SOH CAH TOA in this green triangle gives $a = \cos \theta$ and $c = \sin \theta$

The displacement vector to the rotated green point is thus $\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$.

The green point has coordinates ($\cos \theta$, $\sin \theta$).

The blue and green triangles are congruent, with lengths *a* and *c* equal to lengths *d* and *b* respectively; the displacement vector to the rotated blue point is $\begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$. The blue point has coordinates $(-\sin \theta, \cos \theta)$.

Thus
$$\mathbf{R}_{\theta} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Exercise 6.2

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

(**i**) By comparing the matrix
$$\mathbf{Y} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$
 to $\mathbf{R}_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

1

state the transformation represented by matrix **Y**.

(ii) A rectangle is represented by the multipoint matrix,

$$\mathbf{M} = \begin{pmatrix} 4\sqrt{3} & 8\sqrt{3} & 8\sqrt{3} & 4\sqrt{3} \\ 2 & 2 & 6 & 6 \end{pmatrix}$$

Apply the transformation represented by matrix **Y** to the rectangle. Give the exact coordinates of the transformed rectangle.

Further A-Level Examination Question from February 2010, FP1, Q9 (Edexcel)

$$\mathbf{M} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

(a) Describe fully the geometrical transformation represented by the matrix M

[2 marks]

The transformation represented by **M** maps the point *A* with coordinates (p, q) onto the point *B* with coordinates $(3\sqrt{2}, 4\sqrt{2})$ (**b**) Find the value of *p* and the value of *q*

[4 marks]

(c) Find, in its simplest surd form, the length *OA*, where *O* is the origin.

[2 marks]

 (\mathbf{d}) Find \mathbf{M}^2

[2 marks]

The point *B* is mapped onto the point *C* by the transformation represented by \mathbf{M}^2 (**e**) Find the coordinates of *C*

[2 marks]

Further A-Level Examination Question from May 2016, FP1, Q6 (Edexcel)

$$\mathbf{P} = \begin{pmatrix} \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$$

(**a**) Describe fully the single geometrical transformation U represented by the matrix **P**

[2 marks]

The transformation U maps the point A with coordinates (p, q) onto the point B, with coordinates $(6\sqrt{2}, 3\sqrt{2})$

(**b**) Find the value of p and the value of q

[3 marks]

The transformation V, represented by the 2×2 matrix **Q**, is a reflection in the line with equation y = x.

(c) Write down the matrix **Q**

[1 mark]

The transformation U followed by the transformation V is the transformation T. The transformation T is represented by the matrix **R** (**d**) Find the matrix **R**

[3 marks]

(**e**) Deduce that the transformation *T* is self-inverse

[2 marks]

Further A-Level Examination Question from June 2014, FP1, Q7 (Edexcel)

- (i) In each of the following cases, find a 2×2 matrix that represents
 - (**a**) a reflection in the line y = -x
 - (**b**) a rotation of 135° anticlockwise about (0, 0)
 - (c) a reflection in the line y = -x followed by a rotation of 135° anticlockwise about (0, 0)

[4 marks]

(ii) The triangle *T* has vertices at the points (1, k) (3, 0) and (11, 0) where *k* is a constant,
The triangle *T* is transformed onto the triangle *T'* by the matrix

$$\left(\begin{array}{cc} 6 & -2 \\ 1 & 2 \end{array}\right)$$

Given that the area of triangle T' is 364 square units, find the value of k

(i) Given that
$$\mathbf{P} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

show algebraically that $\mathbf{P}^2 = \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix}$

[6 marks]

(ii) Interpret this result geometrically

[2 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk