Lesson 6

Further A-Level Pure Mathematics: Core 1

Matrix Transformations

6.1 Generalised Rotation

The rotation matrices looked at previously are special cases of a more general result,

Rotation through angle θ about ($\mathbf{0 , 0} \mathbf{0}$)

$$
\mathbf{R}_{\theta}=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Proof

Let the matrix that causes rotation of θ° about the origin be $\mathbf{R}_{\theta}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Consider what this matrix does to the unit square, $\quad \mathbf{U}=\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$

| $\mathbf{R}_{\theta} \mathbf{U}$ | $\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$ |
| :---: | :---: | :---: |
| $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ | $\left(\begin{array}{llll}0 & a & a+b & b \\ 0 & c & c+d & d\end{array}\right)$ |

Thus, under the rotation of $\theta^{\circ}(1,0) \rightarrow(a, c)$ and $(0,1) \rightarrow(b, d)$

From the diagram, the green triangle has hypotenuse 1, opposite c and adjacent a Applying SOH CAH TOA in this green triangle gives $a=\cos \theta$ and $c=\sin \theta$

The displacement vector to the rotated green point is thus $\binom{\cos \theta}{\sin \theta}$.
The green point has coordinates $(\cos \theta, \sin \theta)$.
The blue and green triangles are congruent, with lengths a and c equal to lengths d and b respectively; the displacement vector to the rotated blue point is $\binom{-\sin \theta}{\cos \theta}$.
The blue point has coordinates $(-\sin \theta, \cos \theta)$.
Thus $\mathbf{R}_{\theta}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

Exercise 6.2

$$
\begin{aligned}
& \text { Any solution based entirely on graphical } \\
& \text { or numerical methods is not acceptable } \\
& \text { Marks Available : } 50
\end{aligned}
$$

Question 1

(i) By comparing the matrix $\mathbf{Y}=\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right)$ to $\mathbf{R}_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
state the transformation represented by matrix \mathbf{Y}.
[2 marks]
(ii) A rectangle is represented by the multipoint matrix,

$$
\mathbf{M}=\left(\begin{array}{cccc}
4 \sqrt{3} & 8 \sqrt{3} & 8 \sqrt{3} & 4 \sqrt{3} \\
2 & 2 & 6 & 6
\end{array}\right)
$$

Apply the transformation represented by matrix \mathbf{Y} to the rectangle.
Give the exact coordinates of the transformed rectangle.
(iii) Plot the transformed rectangle on the graph below.

Question 2

Further A-Level Examination Question from February 2010, FP1, Q9 (Edexcel)

$$
\mathbf{M}=\left|\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right|
$$

(a) Describe fully the geometrical transformation represented by the matrix \mathbf{M}

The transformation represented by \mathbf{M} maps the point A with coordinates (p, q) onto the point B with coordinates $(3 \sqrt{2}, 4 \sqrt{2})$
(b) Find the value of p and the value of q
(c) Find, in its simplest surd form, the length $O A$, where O is the origin.
(d) Find \mathbf{M}^{2}

The point B is mapped onto the point C by the transformation represented by \mathbf{M}^{2}
(e) Find the coordinates of C

Question 3

Further A-Level Examination Question from May 2016, FP1, Q6 (Edexcel)

$$
\mathbf{P}=\left(\begin{array}{ll}
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)
$$

(a) Describe fully the single geometrical transformation U represented by the matrix \mathbf{P}

The transformation U maps the point A with coordinates (p, q) onto the point B, with coordinates $(6 \sqrt{2}, 3 \sqrt{2})$
(b) Find the value of p and the value of q

The transformation V, represented by the 2×2 matrix \mathbf{Q}, is a reflection in the line with equation $y=x$.
(c) Write down the matrix \mathbf{Q}

The transformation U followed by the transformation V is the transformation T.
The transformation T is represented by the matrix \mathbf{R}
(d) Find the matrix \mathbf{R}
(e) Deduce that the transformation T is self-inverse

Question 4

Further A-Level Examination Question from June 2014, FP1, Q7 (Edexcel)
(i) In each of the following cases, find a 2×2 matrix that represents (a) a reflection in the line $y=-x$
(b) a rotation of 135° anticlockwise about (0,0)
(c) a reflection in the line $y=-x$ followed by a rotation of 135° anticlockwise about (0,0)
(ii) The triangle T has vertices at the points $(1, k)(3,0)$ and (11,0$)$ where k is a constant,
The triangle T is transformed onto the triangle T^{\prime} by the matrix

$$
\left(\begin{array}{rr}
6 & -2 \\
1 & 2
\end{array}\right)
$$

Given that the area of triangle T^{\prime} is 364 square units, find the value of k

Question 5

(i) Given that $\mathbf{P}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ show algebraically that $\mathbf{P}^{2}=\left(\begin{array}{rr}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right)$
(ii) Interpret this result geometrically

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"
© 2022 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

