9.1 The Undo Matrix

Let the matrix \mathbf{T} be $\left(\begin{array}{rc}-1.5 & 3 \\ 0 & -1.5\end{array}\right)$
The transformation represented by this matrix is applied to the rectangle described by $\mathbf{R}=\left(\begin{array}{rrrr}0 & 4 & 4 & 0 \\ 0 & 0 & -2 & -2\end{array}\right)$

| TR | $\left(\begin{array}{rrrr}0 & 4 & 4 & 0 \\ 0 & 0 & -2 & -2\end{array}\right)$ |
| :---: | :---: | :---: | ---: |
| $\left(\begin{array}{rr}-1.5 & 3 \\ 0 & -1.5\end{array}\right)$ | $\left(\begin{array}{rrrr}0 & -6 & -12 & -6 \\ 0 & 0 & 3 & 3\end{array}\right)$ |

The graph shows the original rectangle and its image, a parallelogram.
Also shown is the area scale factor of the transformation, the $\frac{9}{4}$.
This was calculated from,

$$
\begin{aligned}
\operatorname{det} \mathbf{T} & =(-1.5) \times(-1.5)-3 \times 0 \\
& =2.25
\end{aligned}
$$

Writing this as $\frac{9}{4}$ is helpful as it's then obvious the inverse area scale factor is $\frac{4}{9}$. In starting to think about the inverse transformation that will move the parallelogram back to the rectangle, one would expect $\frac{1}{\operatorname{det} \mathbf{T}}$ to be involved, given the connection between determinants and area scale factor. This insight also illuminates why a determinant of zero is a problem; it's the familiar issue of division by zero not being defined in mathematics emerging once again. Singular matrices can have no inverse.

9.2 Inverting a 2×2 Matrix

Given that we have been using matrices to move points, the inverse matrix will be that which moves the points back from whence they came.

The Inverse of a Matrix
In general, the inverse of a non-singular matrix \mathbf{M} is the matrix \mathbf{M}^{-1} such that

$$
\mathbf{M} \mathbf{M}^{-1}=\mathbf{M}^{-1} \mathbf{M}=\mathbf{I}
$$

In particular, if $\mathbf{M}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $\mathbf{M}^{-1}=\frac{1}{\operatorname{det} \mathbf{M}}\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$

For the matrix $\mathbf{T}=\left(\begin{array}{rc}-1.5 & 3 \\ 0 & -1.5\end{array}\right)$ where $\operatorname{det} \mathbf{T}=\frac{9}{4}$, we have $\frac{1}{\operatorname{det} \mathbf{T}}=\frac{4}{9}$ Thus,

$$
\begin{aligned}
\mathbf{T}^{-1} & =\frac{4}{9}\left(\begin{array}{rr}
-1.5 & -3 \\
0 & -1.5
\end{array}\right) \\
& =-\frac{2}{3}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Now to show that this inverse matrix moves the parallelogram back to the square.

$$
\begin{aligned}
-\frac{2}{3}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{rrrr}
0 & -6 & -12 & -6 \\
0 & 0 & 3 & 3
\end{array}\right) & =-\frac{2}{3}\left(\begin{array}{rrrr}
0 & -6 & -6 & 0 \\
0 & 0 & -3 & 3
\end{array}\right) \\
& =\left(\begin{array}{rrrr}
0 & 4 & 4 & 0 \\
0 & 0 & 2 & -2
\end{array}\right)
\end{aligned}
$$

9.3 Spot Check

Find the inverse of each of the following matrices.
Having done so, check your answers with mine, to be found in 9.5 after the exercise.
For \mathbf{C}, if you wish, you can deal with the third separately, inverting it to a 3 .
$\mathbf{A}=\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right)$
$\mathbf{B}=\left(\begin{array}{cc}4 & 6 \\ 10 & 16\end{array}\right)$
$\mathbf{C}=\frac{1}{3}\left(\begin{array}{rr}6 & -3 \\ -7 & 4\end{array}\right)$

9.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Further A-Level Examination Question from January 2013, FP1, Q6 (Edexcel)

$$
\mathbf{X}=\left(\begin{array}{ll}
1 & a \\
3 & 2
\end{array}\right)
$$

(a) Find the value of a for which the matrix X is singular

$$
\mathbf{Y}=\left(\begin{array}{rr}
1 & -1 \\
3 & 2
\end{array}\right)
$$

(b) Find \mathbf{Y}^{-1}

The transformation represented by \mathbf{Y} maps the point A onto the point B Given that B has coordinates $(1-\lambda, 7 \lambda-2)$ where λ is a constant, (c) find, in terms of λ, the coordinates of point A

Question 2

Further A-Level Examination Question from January 2011, FP1, Q8

$$
\mathbf{A}=\left(\begin{array}{rr}
2 & -2 \\
-1 & 3
\end{array}\right)
$$

(a) Find $\operatorname{det} \mathbf{A}$
(b) Find \mathbf{A}^{-1}

The triangle R is transformed to the triangle S by the matrix \mathbf{A}
Given that the area of triangle S is 72 square units,
(c) find the area of triangle R

The triangle S has vertices at the points $(0,4),(8,16)$ and (12,4).
(d) Find the coordinates of the vertices of R

Question 3

Further A-Level Examination Question from January 2010, Q5 (Edexcel)

$$
\mathbf{A}=\left(\begin{array}{rr}
a & -5 \\
2 & a+4
\end{array}\right), \quad \text { where } a \text { is real }
$$

(a) Find $\operatorname{det} \mathbf{A}$ in terms of a
(b) Show that the matrix \mathbf{A} is non-singular for all values of a

Given that $a=0$,
(c) find \mathbf{A}^{-1}

Question 4

Further A-Level Examination Question from June 2015, Q7 (Edexcel)
(i) $\quad \mathbf{A}=\left(\begin{array}{cc}5 k & 3 k-1 \\ -3 & k+1\end{array}\right)$, where k is a real constant.

Given that \mathbf{A} is a singular matrix, find the possible values of k.
(ii) $\quad \mathbf{B}=\left(\begin{array}{cc}10 & 5 \\ -3 & 3\end{array}\right)$
A triangle T is transformed onto a triangle T^{\prime} by the transformation represented by the matrix \mathbf{B}. The vertices of triangle T^{\prime} have coordinates (0,0), (-20, 6) and ($10 c, 6 c$), where c is a positive constant.

The area of triangle T^{\prime} is 135 square units.
(a) Find the matrix \mathbf{B}^{-1}
(b) Find the coordinates of the vertices of the triangle T in terms of c where necessary.
[3 marks]
(c) Find the value of c

9.5 Answers to the 9.3 Spot Check

$$
\begin{aligned}
\mathbf{A}^{-1} & =\frac{1}{3 \times 2-1 \times 5}\left(\begin{array}{rr}
2 & -1 \\
-5 & 3
\end{array}\right) \\
& =\left(\begin{array}{rr}
2 & -1 \\
-5 & 3
\end{array}\right) \\
\mathbf{B}^{-1} & =\frac{1}{4 \times 16-6 \times 10}\left(\begin{array}{rr}
16 & -6 \\
-10 & 4
\end{array}\right) \\
& =\frac{1}{4}\left(\begin{array}{rr}
16 & -6 \\
-10 & 4
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{rr}
8 & -3 \\
-5 & 2
\end{array}\right) \\
\mathbf{C}^{-1} & =\frac{1}{6 \times 4-(-3) \times(-7)}\left(\begin{array}{rr}
4 & 3 \\
7 & 6
\end{array}\right) \\
& =\frac{3}{3}\left(\begin{array}{rr}
4 & 3 \\
7 & 6
\end{array}\right) \\
& =\left(\begin{array}{ll}
4 & 3 \\
7 & 6
\end{array}\right)
\end{aligned}
$$

