Lesson 4

Conic Sections

GCSE and Preparatory A-Level Mathematics

4.1 Circle and Ellipse

In appearance, a circle (in red) and an ellipse (in gold) have much in common.
They are both smooth and continuous curves that form a graceful closed loop.

No surprise then that their algebraic equations also look similar.

$$
\begin{array}{lc}
\text { Red circle : } & x^{2}+y^{2}=34 \\
\text { Gold ellipse : } & x^{2}+3 y^{2}=52
\end{array}
$$

More generally,

The Equation of a Circle

$$
x^{2}+y^{2}=r^{2}
$$

This is a circle with centre $(0,0)$ and radius r

The Equation of an Ellipse

$$
x^{2}+a y^{2}=w^{2}
$$

This is an ellipse with centre (0,0) and half width, w

In fact, when $a=1$ in the equation of an ellipse, it becomes the equation of a circle. This is because,

$$
a=\left(\frac{\text { half width }}{\text { half height }}\right)^{2}
$$

and for a circle the half width and the half height are the same; the radius, r.

- The half width is the number where the ellipse crosses the positive x-axis.
- The half height is the number where the ellipse crosses the positive y-axis.

4.2 Where Gold meets Red

Use algebra to solve the simultaneous equations,

$$
\begin{aligned}
\text { Red circle }: & x^{2}+y^{2}=34 \\
\text { Gold ellipse : } & x^{2}+3 y^{2}=52
\end{aligned}
$$

Teaching Video : http://www.NumberWonder.co.uk/v9091/4.mp4

4.3 Exercise

Question 1

Use algebra to solve the simultaneous equations,

$$
\begin{aligned}
\text { Red circle }: & x^{2}+y^{2}=17 \\
\text { Gold ellipse }: & x^{2}+5 y^{2}=81
\end{aligned}
$$

Question 2

Use algebra to solve the simultaneous equations,

$$
\begin{aligned}
& \text { Red circle : } x^{2}+y^{2}=66 \\
& \text { Gold ellipse }: x^{2}+12 y^{2}=88
\end{aligned}
$$

Give your points as exact coordinates, leaving square roots in your answers.

Question 3

Use algebra to solve the simultaneous equations,

$$
\begin{aligned}
\text { Gold ellipse : } & x^{2}+4 y^{2} & =52 \\
\text { Green hyperbola : } & y & =\frac{12}{x}
\end{aligned}
$$

You may find this list of pairs of positive integers that have a product of 576 of use !
1×576
2×288
3×192
4×144
6×96
8×72
9×64
12×48
16×36
18×32
24×24

Question 4

Use algebra to solve the simultaneous equations,

$$
\text { Gold ellipse : } x^{2}+2 y^{2}=72
$$

Purple parabola : $\quad y=\frac{x^{2}}{8}-6$

