Further Pure A-Level Mathematics
Compulsory Course Component
Core 1

SERIES

~ A N D ~
Visual proof

SERIES
 AND
 VISUAL PROOF

Lesson 1

Further A-Level Pure Mathematics: Core 1
Series and Visual Proof

1.1 Triangular Numbers

The triangular numbers are so called because the start of the sequence, which begins $1,3,6,10,15, \ldots$ can be visualised as dots arranged in equilateral triangles like so;

The sixth triangular number can be described in sigma notation as $\sum_{1}^{6} r$ and this can be found easily enough without drawing the next diagram as,

$$
\begin{aligned}
\sum_{1}^{6} r & =1+2+3+4+5+6 \\
& =21
\end{aligned}
$$

Notice that an item in a sequence has been found from a series.

Sequence and Series

Sequence : A list of numbers, repetitions allowed, where order matters.
Series: The summation of a sequence.
To remember which is which: " S, e, q, u, e, n, c, e and $S+e+r+i+e+s$ "

When working with the Natural Numbers ${ }^{\dagger}$ it is useful to associate abutted unit squares with the numbers, such that, for example, 3×7, is associated with a rectangle of height 3 and width 7 . The area of the rectangle, 21 , is then both the answer to the multiplication, and the number of squares in the rectangle.

[^0]Formula for the $n^{\text {th }}$ Triangular Number

$$
\sum_{1}^{n} r=\frac{1}{2} n(n+1)
$$

Proof

Watch the following teaching video then, in the space below, make use of the diagrams provided to write out the proof described.

Teaching Video : http://www.NumberWonder.co.uk/v9092/1.mp4

1.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable.
> Marks available : 54

Question 1

Use the appropriate formula to determine the $100^{\text {th }}$ triangular number, $\sum_{1}^{100} r$

Question 2

Evaluate, $\sum_{1}^{200} r$

Question 3

Find the sum of the first 500 natural numbers.

Question 4

Use the diagram below to visually prove that,
(i) $\quad \sum_{1}^{6} 1=6$
(ii) $\quad \sum_{1}^{n} 1=n$

Question 5

Evaluate
(i) $\quad \sum_{1}^{50} 1$
(ii) $5 \sum_{1}^{23} 1$

Question 6

(i) By first writing out all six terms in the series, determine the value of,

$$
\sum_{1}^{6}(3 r-2)
$$

(ii) By using the appropriate formula determine,

$$
3 \sum_{1}^{6} r-2 \sum_{1}^{6} 1
$$

Question 7

By expanding $\sum_{1}^{14}(4 r+5)$ as $4 \sum_{1}^{14} r+5 \sum_{1}^{14} 1$ and using appropriate formula, evaluate,

$$
\sum_{1}^{14}(4 r+5)
$$

Question 8

Determine the value of $\sum_{1}^{30}(2 r+7)$

Question 9

By expanding $\sum_{4}^{7} r$ as $\sum_{1}^{7} r-\sum_{1}^{3} r$ and using appropriate formula, evaluate,

$$
\sum_{4}^{7} r
$$

Question 10

Determine the value of $\frac{1}{100} \sum_{80}^{120} r$

Question 11

(i) Show that,

$$
\sum_{r=1}^{n}(7 r-4)=\frac{1}{2} n(7 n-1)
$$

(ii) Hence evaluate,

$$
\sum_{r=20}^{50}(7 r-4)
$$

Question 12

Given that $\sum_{r=1}^{n} r=528$, find the value of n

Question 13

Let the $n^{\text {th }}$ triangular number be $T_{n}=\sum_{1}^{n} r$
(i) Using algebra, prove that $T_{n}-T_{n-1}=n$
[4 marks]
(ii) By drawing triangles, find a visual proof that $T_{n}-T_{n-1}=n$

[^0]: \dagger The natural numbers, \mathbb{N}, are the set $\{1,2,3,4,5,6,7, \ldots\}$
 Notice that in the A-Level course \mathbb{N} does not include zero, by definition.

