Further A-Level Pure Mathematics: Core 1

Series and Visual Proof

2.1 Formalising Series Manipulations

Here is a formal statement of the rules that were used without being explicitly stated in Lesson 1,

Non Start From 1

To find the sum of a series that does not start at $r=1$,

$$
\sum_{r=k}^{n} f(r)=\sum_{r=1}^{n} f(r)-\sum_{r=1}^{k-1} f(r)
$$

Factor Extractor

$$
\sum_{r=1}^{n} k f(r)=k \sum_{r=1}^{n} f(r) \quad \text { where } k \text { is a constant }
$$

The Linearity Property

$$
\sum_{r=1}^{n}(f(r)+g(r))=\sum_{r=1}^{n} f(r)+\sum_{r=1}^{n} g(r)
$$

2.2 Example

The following question makes use of all of the above rules,
Given that $\sum_{r=n}^{2 n}(15-2 r)=0$, find n

Teaching Video : $\underline{\text { http://www.NumberWonder.co.uk/v9092/2a.mp4 }}$ http://www.NumberWonder.co.uk/v9092/2b.mp4

<= Part 1
Part 2 =>

Watch the Part 1 video, writing out your own version of the initial steps below.
The part 1 video invites you to complete the solution before watching Part 2.
Given that $\sum_{r=n}^{2 n}(15-2 r)=0$, find n

2.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable.
> Marks available : 40

Question 1

The diagram suggests the pattern,

$$
\begin{array}{rlrl}
7 & =1 \times 7 & & : \\
& n=1 \\
7+13 & =2 \times 10 & & : \\
n+13+19 & =3 \times 13 & & : \\
n+16 & n=3 \\
7+13+19+25 & =4 \times 16 & & : \\
n & =4
\end{array}
$$

(i) Write down the next line of the pattern corresponding to $n=5$
[1 mark]
The pattern suggests that,

$$
\sum_{r=1}^{n}(6 r+1)=n(3 n+4)
$$

(ii) Prove the suggested result by using the standard results for $\sum_{1}^{n} 1$ and $\sum_{1}^{n} r$ The start of the proof is given below,

$$
\begin{aligned}
& \text { LHS }= \sum_{r=1}^{n}(6 r+1) \\
&=
\end{aligned}
$$

Question 2

The diagram suggests the pattern,

$$
\begin{array}{rlll}
1 & =1 \times 1 & : & n=1 \\
1+5 & =2 \times 3 & : & n=2 \\
1+5+9 & =3 \times 5 & & n=3 \\
1+5+9+13 & =4 \times 7 & & : \\
n=4
\end{array}
$$

(i) Write down the next line of the pattern corresponding to $n=5$
[1 mark]
(ii) The pattern suggests a relationship of the form,

$$
\sum_{r=1}^{n}(a r+b)=n(c n+d)
$$

Write down the suggested relationship with the integer constants a, b, c and d replaced with their numerical values.
[2 marks]
(iii) Prove the suggested result by using the standard results for $\sum_{1}^{n} 1$ and $\sum_{1}^{n} r$

Question 3

Prove $\sum_{r=1}^{2 n}(5 r-4)=n(10 n-3)$ using the standard results for $\sum_{1}^{n} 1$ and $\sum_{1}^{n} r$

Question 4

(i) Find an expression for $\sum_{r=1}^{2 n-1} r$
(ii) Hence show that $\sum_{r=n+1}^{2 n-1} r=\frac{3}{2} n(n-1)$, for $n \geqslant 2$

Question 5

The diagrams suggest the following relationship between triangular numbers,

$$
T_{n^{2}}=n^{2} T_{n-1}+n T_{n} \quad n \geqslant 2
$$

The first two lines of a proof are given below. Complete the proof.

$$
\begin{aligned}
\text { RHS } & =n^{2} T_{n-1}+n T_{n} \\
& =n^{2} \sum_{1}^{n-1} r+n \sum_{1}^{n} r \\
& =
\end{aligned}
$$

Question 6

Arithmetic Progressions

Algebraically, an Arithmetic Progression is a number sequence of the form;

$$
a, \quad a+d, \quad a+2 d, \quad a+3 d, \ldots, \quad a+(n-1) d
$$

where a is the initial term,
d is the common difference,
and n is number of terms.

The $n^{t h}$ term, L_{n}, is given by $L_{n}=a+(n-1) d \quad n \geqslant 1$
The sum of a AP is given by, $S_{n}=\frac{n}{2}\{a+L\} \quad n \geqslant 1$
In words this can be remembered as :
" n times the average of the first and last terms"

From substituting the first formula into the second, another formula is obtained for the sum of an AP. It is, $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}, \quad n \geqslant 1$ Observe that $\sum_{r=1}^{n} r$ is an Arithmetic Progression.
For this arithmetic progression,
(i) What is the the first term ?
(ii) What is the common difference
(iii) Hence show how the formula for the sum of an Arithmetic Progression can be used to derive a formula for $\sum_{r=1}^{n} r$

Question 7

Given that $\sum_{r=n}^{3 n}(80-3 r)=54$, find n

