Further Pure A-Level Mathematics
Compulsory Course Component
Core 1

R o ot S
 ~ OF ~

PolynomialS

The five roots in the complex plane of the polynomial equation $z^{5}=1$

R O OTS
 OF
 POLYNOMIALS

Lesson 1

Further A-Level Pure Mathematics : Core 1
 Roots of Polynomials

1.1 Quadratic and Roots

The simple quadratic equation $a x^{2}+b x+c=0$ is a surprisingly rich source of mathematical ideas. It was the original motivation to develop the technique of completing the square, and a doorway into an understanding of complex numbers. Through iterating the simple quadratic $z^{2}=c$ the world of Fractal Geometry was discovered in the 1980s. This topic, Roots of Polynomials, also starts by looking at the quadratic equation from a new perspective.

1.2 Sum Of Roots

The Sum Of The Roots

If α and β are the roots of the equation $a x^{2}+b x+c=0 \quad a, b, c \in \mathbb{C}$ then,

$$
\alpha+\beta=-\frac{b}{a}
$$

Proof

Without loss of generality, let $\alpha=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$

$$
\text { and } \beta=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

then

$$
\begin{aligned}
\alpha+\beta & =\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}+\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \\
& =-\frac{b}{2 a}+\frac{\sqrt{b^{2}-4 a c}}{2 a}-\frac{b}{2 a}-\frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& =-\frac{b}{2 a}-\frac{b}{2 a} \\
& =\frac{-2 b}{2 a} \\
& =-\frac{b}{a}
\end{aligned}
$$

1.3 Product Of Roots

The Product Of The Roots

If α and β are the roots of the equation $a x^{2}+b x+c=0 \quad a, b, c \in \mathbb{C}$ then,

$$
\alpha \beta=\frac{c}{a}
$$

Proof

Without loss of generality, let $\alpha=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$

$$
\text { and } \beta=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

then

$$
\begin{aligned}
\alpha \beta & =\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right)\left(\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right) \\
& =\frac{(-b)^{2}-\left(\sqrt{b^{2}-4 a c}\right)^{2}}{4 a^{2}} \quad \text { Difference of two squares } \\
& =\frac{b^{2}-\left(b^{2}-4 a c\right)}{4 a^{2}} \\
& =\frac{b^{2}-b^{2}+4 a c}{4 a^{2}} \\
& =\frac{4 a c}{4 a^{2}} \\
& =\frac{c}{a}
\end{aligned}
$$

1.4 Sum, Product Example

The roots of the quadratic $8 x^{2}+2 x-15=0$ are α and β.
Without solving the equation, find the values of
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iv) $\alpha^{2}+\beta^{2}$

Teaching Video : http://www.NumberWonder.co.uk/v9093/1.mp4

1.5 After Watching the Teaching Video

(a) Having watched the teaching video complete the following,
(i) In general $a x^{2}+b x+c=0$ divided throughout by a gives,

198
(ii) This is is useful because,

10
[1 mark]
(iii) For the particular example, $8 x^{2}+2 x-15=0$ is divided by 8 to get,

10
[1 mark]
(b) Without solving the equation, find the values of
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$

12
(iv) $\alpha^{2}+\beta^{2}$
10

1.6 Exercise

$$
\begin{aligned}
& \text { Any solution based entirely on graphical } \\
& \text { or numerical methods is not acceptable. } \\
& \text { Make the method used clear. } \\
& \text { Marks available : } 40
\end{aligned}
$$

Question 1

The roots of the quadratic equation $3 x^{2}+7 x-2=0$ are α and β.
Without solving the equation, find the values of
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iv) $\alpha^{2}+\beta^{2}$
[1, 1, 2, 2 marks]

Question 2

The roots of the quadratic equation $4 x^{2}-3 x+1=0$ are α and β.
Without solving the equation, find the values of,
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\alpha^{2}+\beta^{2}$
(iv) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$

Question 3

(i) Prove that,

$$
(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=\alpha^{3}+\beta^{3}
$$

(ii) The roots of the quadratic equation $5 x^{2}+6 x+2=0$ are α and β. Without solving the equation, find the exact value of $\alpha^{3}+\beta^{3}$
[4 marks]

Question 4

The roots of a quadratic equation $a x^{2}+b x+c=0$ are $\alpha=\frac{1}{2}$ and $\beta=-\frac{2}{3}$ Find integer values for a, b and c

Question 5

The complex roots of a quadratic equation $a x^{2}+b x+c=0$ are

$$
\alpha=\frac{1+2 \mathrm{i}}{3} \text { and } \beta=\frac{1-2 \mathrm{i}}{3}
$$

Find integer values for a, b and c

Question 6

The roots of the equation $6 x^{2}+36 x+k=0$ are reciprocals of each other. Find the value of the constant, k

Question 7

Gerolamo Cardano (1501-1576) is credited with the first formula for solving cubic equations.

Depressed Cubic Formation Rule

Faced with a general cubic,

$$
a x^{3}+b x^{2}+c x+d=0 \quad a, b, c, d \in \mathbb{C}
$$

initiate a change of variable by replacing x with $t-\frac{b}{3 a}$
This will always result in what is termed a depressed cubic, one of the form,

$$
t^{3}+p t+q=0 \quad p, q \in \mathbb{C}
$$

(i) Make the appropriate change of variable for the cubic,

$$
x^{3}-3 x^{2}+12 x+16=0
$$

and show that the resulting depressed cubic is,

$$
t^{3}+9 t+26=0
$$

Root of a Cubic

Given a depressed cubic of the form

$$
t^{3}+p t+q=0 \quad p, q \in \mathbb{C}
$$

where p and q are not both zero, and $4 p^{3}+27 q^{2} \neq 0$, calculate,

$$
C=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

A root of the cubic is then given by,

$$
\alpha=C-\frac{p}{3 C}
$$

(ii) Determine a root of the depressed cubic,

$$
t^{3}+9 t+26=0
$$

(iii) Using polynomial division, find all three roots, two of which are a complex conjugate pair, of the depressed cubic,

$$
t^{3}+9 t+26=0
$$

(iv) List the three roots of the original cubic equation,

$$
x^{3}-3 x^{2}+12 x+16=0
$$

