Further Pure A-Level Mathematics Compulsory Course Component Core 1

R o o t S ~ o f ~ PolynomialS

The five roots in the complex plane of the polynomial equation $z^5 = 1$

ROOTS OF POLYNOMIALS

Lesson 1

Further A-Level Pure Mathematics : Core 1 Roots of Polynomials

1.1 Quadratic and Roots

The simple quadratic equation $ax^2 + bx + c = 0$ is a surprisingly rich source of mathematical ideas. It was the original motivation to develop the technique of completing the square, and a doorway into an understanding of complex numbers. Through iterating the simple quadratic $z^2 = c$ the world of Fractal Geometry was discovered in the 1980s. This topic, *Roots of Polynomials*, also starts by looking at the quadratic equation from a new perspective.

1.2 Sum Of Roots

The Sum Of The Roots

If α and β are the roots of the equation $ax^2 + bx + c = 0$ $a, b, c \in \mathbb{C}$ then, $\alpha + \beta = -\frac{b}{a}$

Proof

Without loss of generality, let
$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

and $\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

then

$$\alpha + \beta = \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
$$= -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} - \frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$= -\frac{b}{2a} - \frac{b}{2a}$$
$$= -\frac{2b}{2a}$$
$$= -\frac{b}{a} \qquad \Box$$

1.3 Product Of Roots

The Product Of The Roots

If α and β are the roots of the equation $ax^2 + bx + c = 0$ $a, b, c \in \mathbb{C}$ then, $\alpha\beta = \frac{c}{a}$

Proof

Without loss of generality, let
$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

and $\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

then

$$a\beta = \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right)$$
$$= \frac{(-b)^2 - \left(\sqrt{b^2 - 4ac}\right)^2}{4a^2} \qquad \text{Difference of two squares}$$
$$= \frac{b^2 - \left(b^2 - 4ac\right)}{4a^2}$$
$$= \frac{b^2 - b^2 + 4ac}{4a^2}$$
$$= \frac{4ac}{4a^2}$$
$$= \frac{4ac}{4a^2}$$
$$= \frac{c}{a} \qquad \Box$$

1.4 Sum, Product Example

The roots of the quadratic $8x^2 + 2x - 15 = 0$ are α and β . Without solving the equation, find the values of

(i)
$$\alpha + \beta$$
 (ii) $\alpha\beta$
(iii) $\frac{1}{\alpha} + \frac{1}{\beta}$ (iv) $\alpha^2 + \beta^2$

Teaching Video : http://www.NumberWonder.co.uk/v9093/1.mp4

1.5 After Watching the Teaching Video

(**a**) Having watched the teaching video complete the following,

(i)	In general $a x^2 + bx + c = 0$ divided throughout by <i>a</i> gives,
Ē	[1 mark]
(ii)	This is useful because,
Ś	[1 mark]
(iii)	For the particular example, $8x^2 + 2x - 15 = 0$ is divided by 8 to get,
E	[1 mark]

(**b**) Without solving the equation, find the values of

(i) $\alpha + \beta$ (ii) $\alpha\beta$

Ś

GF

[1, 1 mark]

(iii) $\frac{1}{\alpha} + \frac{1}{\beta}$ (iv) $\alpha^2 + \beta^2$

1.6 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable. Make the method used clear. Marks available : 40

Question 1

The roots of the quadratic equation $3x^2 + 7x - 2 = 0$ are α and β . Without solving the equation, find the values of (i) $\alpha + \beta$ (ii) $\alpha\beta$

(iii) $\frac{1}{\alpha} + \frac{1}{\beta}$ (iv) $\alpha^2 + \beta^2$

[1, 1, 2, 2 marks]

Question 2

The roots of the quadratic equation $4x^2 - 3x + 1 = 0$ are α and β . Without solving the equation, find the values of, (i) $\alpha + \beta$ (ii) $\alpha\beta$

(iii) $\alpha^2 + \beta^2$ (iv) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$

[1, 1, 2, 2 marks]

Question 3

(**i**) Prove that,

$$(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = \alpha^3 + \beta^3$$

[2 marks]

(ii) The roots of the quadratic equation $5x^2 + 6x + 2 = 0$ are α and β . Without solving the equation, find the exact value of $\alpha^3 + \beta^3$

[4 marks]

Question 4

The roots of a quadratic equation $ax^2 + bx + c = 0$ are $\alpha = \frac{1}{2}$ and $\beta = -\frac{2}{3}$ Find integer values for *a*, *b* and *c*

[3 marks]

Question 5

The complex roots of a quadratic equation $ax^2 + bx + c = 0$ are

$$\alpha = \frac{1+2i}{3}$$
 and $\beta = \frac{1-2i}{3}$

Find integer values for *a*, *b* and *c*

[4 marks]

Question 6

The roots of the equation $6x^2 + 36x + k = 0$ are reciprocals of each other. Find the value of the constant, k

[4 marks]

Question 7

Gerolamo Cardano (1501-1576) is credited with the first formula for solving cubic equations.

Depressed Cubic Formation Rule

Faced with a general cubic,

$$ax^{3} + bx^{2} + cx + d = 0$$

a, *b*, *c*, $d \in \mathbb{C}$
initiate a change of variable by replacing *x* with $t - \frac{b}{3a}$
This will always result in what is termed a depressed cubic, one of the form,

$$t^3 + pt + q = 0 \qquad \qquad p, q \in \mathbb{C}$$

(i) Make the appropriate change of variable for the cubic,

 $x^3 - 3x^2 + 12x + 16 = 0$

and show that the resulting depressed cubic is,

$$t^3 + 9t + 26 = 0$$

[4 marks]

Root of a Cubic

Given a depressed cubic of the form

$$t^{3} + pt + q = 0$$
 $p, q \in \mathbb{C}$
where p and q are not both zero, and $4p^{3} + 27q^{2} \neq 0$, calculate,

$$C = \sqrt[3]{-\frac{q}{2}} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$$

A root of the cubic is then given by,

$$\alpha = C - \frac{p}{3C}$$

(ii) Determine a root of the depressed cubic,

 $t^3 + 9t + 26 = 0$

[3 marks]

(iii) Using polynomial division, find all three roots, two of which are a complex conjugate pair, of the depressed cubic,

$$t^3 + 9t + 26 = 0$$

[2 marks]

(iv) List the three roots of the original cubic equation,

$$x^3 - 3x^2 + 12x + 16 = 0$$

[2 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk