Lesson 3

Further A-Level Pure Mathematics : Core 1

Roots of Polynomials

3.1 Cubic and Roots

Having taken a fresh look at quadratic equations through a study of their roots, the focus can now shift to cubic equations. Thanks to Gerolamo Cardano it is known that there is, in principle, a formula to solve cubics. Alas, it has a square root nested inside a cube root which makes manipulating it intricate. Fortunately, the algebra can be skirted around by a more thoughtful approach. To illustrate the idea, it will first be applied it to the generalised quadratic equation.

3.2 A Proof Rewritten

The Roots of a Quadratic

If α and β are the roots of the equation $a x^{2}+b x+c=0 \quad a, b, c \in \mathbb{C}$
then,

$$
\alpha+\beta=-\frac{b}{a} \quad \alpha \beta=\frac{c}{a}
$$

Proof
For a general quadratic, with roots α and β,

$$
\begin{aligned}
a x^{2}+b x+c & =a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right) \\
& =a((x-\alpha)(x-\beta)) \\
& =a\left(x^{2}-\alpha x-\beta x+\alpha \beta\right) \\
& =a\left(x^{2}-(\alpha+\beta) x+\alpha \beta\right)
\end{aligned}
$$

From which can be seen that,

$$
\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)=\left(x^{2}-(\alpha+\beta) x+\alpha \beta\right)
$$

And, by matching coefficients of x, the deduction made that,

$$
\alpha+\beta=-\frac{b}{a} \quad \text { and } \alpha \beta=\frac{c}{a}
$$

The key feature of this proof, in comparison with that presented in Lesson 1, is that no use is made of the formula,

$$
x=\frac{-b \pm \sqrt{b^{2}+4 a c}}{2 a}
$$

3.3 A Similar Proof For Cubics

The Roots of a Cubic

If α, β and γ are roots of $a x^{3}+b x^{2}+c x+d=0 \quad a, b, c, d \in \mathbb{C}$ then, $\quad \alpha+\beta+\gamma=-\frac{b}{a} \quad \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a} \quad \alpha \beta \gamma=-\frac{d}{a}$

Proof

For a general cubic, with roots α, β and γ,

$$
\begin{aligned}
a x^{3}+b x^{2}+c x+d & =a\left(x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a}\right) \\
& =a((x-\alpha)(x-\beta)(x-\gamma)) \\
& =a\left(\left(x^{2}-\alpha x-\beta x+\alpha \beta\right)(x-\gamma)\right) \\
& =a\left(\left(x^{2}-\alpha x-\beta x+\alpha \beta\right) x-\left(x^{2}-\alpha x-\beta x+\alpha \beta\right) \gamma\right) \\
& =a\left(x^{3}-\alpha x^{2}-\beta x^{2}+\alpha \beta x-\gamma x^{2}+\alpha \gamma x+\beta \gamma x-\alpha \beta \gamma\right) \\
& =a\left(x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma\right)
\end{aligned}
$$

from which can be seen that,
$\left(x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a}\right)=\left(x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma\right)$
and, by matching coefficients of x, the deduction made that,

$$
\alpha+\beta+\lambda=-\frac{b}{a}, \quad \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a} \quad \text { and } \alpha \beta \gamma=-\frac{d}{a}
$$

Notice that, as with the quadratic,

- The sum of the roots is $\left(-\frac{b}{a}\right)$
- The sum of all possible product pairs of roots is $\left(\frac{c}{a}\right)$

3.4 Example

The roots of the cubic equation $2 x^{3}+5 x^{2}-2 x+3=0$ are α, β and γ.
Without solving the equation, find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$

Teaching Video : http://www.NumberWonder.co.uk/v9093/3.mp4

Watch the teaching video and then write out a solution to the question.

108

3.5 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable.
> Make the method used clear.
> Marks available : 40

Question 1

The roots of the equation $4 x^{3}-3 x^{2}-x+6=0$ are α, β and γ Without solving the equation, find the roots of
(i) $\alpha+\beta+\gamma$
(ii) $\alpha \beta+\beta \gamma+\gamma \alpha$
[1, 1 mark]
(iii) $\alpha^{2} \beta^{2} \gamma^{2}$
(iv) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$

Question 2

The roots of the cubic equation $a x^{3}+b x^{2}+c x+d=0$ are,

$$
\alpha=8, \quad \beta=9 \text { and } \gamma=-10
$$

Find integer values for a, b, c and d

Question 3

(i) With the aid of the diagram expand the brackets of $(\alpha+\beta+\gamma)^{2}$

The roots of the equation $2 x^{3}+4 x^{2}+7 x+1=0$ are α, β and γ Without solving the equation, write down the values of,
(ii) $\quad \alpha+\beta+\gamma$
(iii) $\alpha \beta+\beta \gamma+\gamma \alpha$
(iv) $\alpha \beta \gamma$
[1 mark]
(v) $\quad \alpha^{2}+\beta^{2}+\gamma^{2}$

Question 4

Further A-Level Examination Question from June 2017 SAM, Core 2, Q1
The roots of the equation $x^{3}-8 x^{2}+28 x-32=0$ are α, β and γ Without solving the equation, find the value of
(i) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(ii) $(\alpha+2)(\beta+2)(\gamma+2)$
(iii) $\alpha^{2}+\beta^{2}+\gamma^{2}$

Question 5

Our sequence of questions exploring Cardano's extraordinary achievement in finding and using a formula to solve cubic equations continues by looking at,

$$
x^{3}-252 x+1296=0
$$

As you will discover, this example involves complex numbers.
Here is a recap of the theory to be applied;

Roots of a Cubic

Given a depressed cubic of the form

$$
t^{3}+p t+q=0 \quad p, q \in \mathbb{C}
$$

where p and q are not both zero, and $4 p^{3}+27 q^{2} \neq 0$, calculate,

$$
C=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

A root of the cubic is then given by,

$$
\alpha=C-\frac{p}{3 C}
$$

Polynomial division can then be used to find the remaining roots.

To help with a tricky step, there is a part (i) which is useful when tackling the main problem.
(i) Expand the brackets,

$$
(6+4 \sqrt{3} i)^{3} \text { where } i=\sqrt{-1} \text { such that } i^{2}=-1
$$

giving your answer in the form $a \sqrt{3} \mathrm{i}+b$ for integer a and b
(ii) Determine using the method of Cardano, the real root of the cubic,

$$
x^{3}-252 x+1296=0
$$

[3 marks]

(iii) Using polynomial division with your part (ii) answer, find all three roots, which are all real, of the depressed cubic,

$$
x^{3}-252 x+1296=0
$$

Question 6

(i) In question 3 a square with sides of length $\alpha+\beta+\gamma$ was of assistance in expanding the brackets of $(\alpha+\beta+\gamma)^{2}$
For $(\alpha+\beta+\gamma)^{3}$ a cube can be used in which case the three layers of the cube give cuboids with volumes as shown above.
By using the diagrams or otherwise, expand the brackets of $(\alpha+\beta+\gamma)^{3}$
[1 mark]
(ii) Manipulate your part (i) answer into a form that will allow you to express $\alpha^{3}+\beta^{3}+\gamma^{3}$ in terms of $\alpha+\beta+\gamma, \alpha \beta+\beta \gamma+\gamma \alpha$ and $\alpha \beta \gamma$

Question 7

Further A-Level Examination Question from June 2019, Core 2, Q2 (Edexcel)
The roots of the equation $x^{3}-2 x^{2}+4 x-5=0$ are p, q and r
Without solving the equation, find the value of
(i) $\frac{2}{p}+\frac{2}{q}+\frac{2}{r}$
(ii) $(p-4)(q-4)(r-4)$
(iii) $p^{3}+q^{3}+r^{3}$

