Lesson 6

Further A-Level Pure Mathematics : Core 1 Roots of Polynomials

6.1 Test Preparation

Gerolamo Cardano's first step in solving the general cubic equation was to make a substitution that turned it into a depressed cubic equation.

Depressed Cubic Formation Rule

Faced with a general cubic,

 $a x^{3} + b x^{2} + cx + d = 0$ *a*, *b*, *c*, $d \in \mathbb{C}$ initiate a change of variable by replacing *x* with $t - \frac{b}{3a}$

This will always result in what is termed a depressed cubic, one of the form,

 $t^3 + pt + q = 0 \qquad \qquad p, q \in \mathbb{C}$

The depressed cubic equation has some useful properties one of which shall now be studied, as it has a beautiful proof.

6.2 Sum of Cubes for a Depressed Cubic

Sum of Cubes for a Depressed Cubic

For a depressed cubic.

$$t^3 + pt + q = 0 \qquad p, q \in \mathbb{C}$$

with roots α , β and γ

 $\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma$

Proof

As there is no term in
$$t^2$$
, $\alpha + \beta + \gamma = 0$
 $\therefore \alpha + \beta = -\gamma$

Cube both sides

$$(\alpha + \beta)^{3} = -\gamma^{3}$$

$$\alpha^{3} + 3\alpha^{2}\beta + 3\alpha\beta^{2} + \beta^{3} = -\gamma^{3}$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = -3\alpha\beta(\alpha + \beta)$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = -3\alpha\beta(-\gamma)$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = 3\alpha\beta\gamma \qquad \Box$$

6.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable. Make the method used clear. Marks available : 50

Question 1

The roots of the quadratic equation $ax^2 + bx + c = 0$ are $\frac{-3 \pm 4i}{2}$ Find integer values for *a*, *b* and *c*

[3 marks]

Question 2

The roots of the equation $ax^4 + 7x^3 + 5x^2 + 3x - 4 = 0$ are α, β, γ and δ (**a**) Given that $\alpha\beta\gamma\delta = -1$, write down the value of a

[1 mark]

(**b**) $\sum \alpha\beta$ is (sloppy) shorthand for "sum of the product pairs of roots". For a quartic $\sum \alpha\beta = \alpha (\beta + \gamma + \delta) + \beta (\gamma + \delta) + \gamma (\delta)$ $= \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$

Write down the values of $\sum \alpha$, $\sum \alpha \beta$ and $\sum \alpha \beta \gamma$

[3 marks]

(c) Hence find the value of $a^2 + \beta^2 + \gamma^2 + \delta^2$

[3 marks]

Further A-Level Examination Question from May 2018, IAL, F1, Q7 (Edexcel)

It is given that α and β are roots of the equation $5x^2 - 4x + 3 = 0$ Without solving the equation,

(**a**) find the exact value of
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$

[5 marks]

(**b**) find a quadratic equation which has roots $\frac{3}{\alpha^2}$ and $\frac{3}{\beta^2}$ giving your answer in the form $ax^2 + bx + c = 0$, where *a*, *b* and *c* are integers.

(i) For the general cubic, $ax^3 + bx^2 + cx + d = 0$, write down from memory the formula for $a^3 + \beta^3 + \gamma^3$

[2 marks]

(ii) Show that your part (i) formula yields the same expression as proven in section "6.2 Sum of Cubes for a Depressed Cubic" when b = 0 in the general cubic equation.

[2 marks]

(iii) Consider the cubic equation,

$$x^3 + 3x^2 + 50 = 0$$

Using a suitable substitution, transform this into a depressed cubic.

[2 marks]

(iv) By thinking of $\alpha^3 \beta^3 + \beta^3 \gamma^3 + \gamma^3 \alpha^3$ as $P^3 + Q^3 + R^3$ and using the same formula as in part (i) derive a formula for $\alpha^3 \beta^3 + \beta^3 \gamma^3 + \gamma^3 \alpha^3$ with component parts that are either $\alpha + \beta + \gamma$ or $\alpha\beta + \beta\gamma + \gamma\alpha$ or $\alpha\beta\gamma$.

[4 marks]

(v) Let α , β and γ be the roots of your part (iii) depressed cubic. Without solving the equation find a cubic with roots, α^3 , β^3 and γ^3 in the form $w^3 + pw^2 + qw + r$ where p, q and r are integers.

 $f(x) = mx^3 + 12x^2 + 4x + 16$ where *m* is a real constant Given that,

• *f* has at least one root on the imaginary axis Solve completely,

$$f(x) = 0$$

Prove that the roots of $x^3 + px + qx + r = 0$ form an Arithmetic Progression if and only if $2p^3 + 27r = 9pq$

[8 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk