6.1 Test Preparation

Gerolamo Cardano's first step in solving the general cubic equation was to make a substitution that turned it into a depressed cubic equation.

Depressed Cubic Formation Rule

Faced with a general cubic,

$$
a x^{3}+b x^{2}+c x+d=0 \quad a, b, c, d \in \mathbb{C}
$$

initiate a change of variable by replacing x with $t-\frac{b}{3 a}$
This will always result in what is termed a depressed cubic, one of the form,

$$
t^{3}+p t+q=0 \quad p, q \in \mathbb{C}
$$

The depressed cubic equation has some useful properties one of which shall now be studied, as it has a beautiful proof.

6.2 Sum of Cubes for a Depressed Cubic

Sum of Cubes for a Depressed Cubic

For a depressed cubic.

$$
t^{3}+p t+q=0 \quad p, q \in \mathbb{C}
$$

with roots α, β and γ

$$
\alpha^{3}+\beta^{3}+\gamma^{3}=3 \alpha \beta \gamma
$$

Proof

As there is no term in $t^{2}, \alpha+\beta+\gamma=0$
$\therefore \alpha+\beta=-\gamma$
Cube both sides

$$
\begin{aligned}
(\alpha+\beta)^{3} & =-\gamma^{3} \\
\alpha^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}+\beta^{3} & =-\gamma^{3} \\
\alpha^{3}+\beta^{3}+\gamma^{3} & =-3 \alpha \beta(\alpha+\beta) \\
\alpha^{3}+\beta^{3}+\gamma^{3} & =-3 \alpha \beta(-\gamma) \\
\alpha^{3}+\beta^{3}+\gamma^{3} & =3 \alpha \beta \gamma
\end{aligned}
$$

6.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable.
> Make the method used clear.
> Marks available : 50

Question 1

The roots of the quadratic equation $a x^{2}+b x+c=0$ are $\frac{-3 \pm 4 \mathrm{i}}{2}$
Find integer values for a, b and c

Question 2

The roots of the equation $a x^{4}+7 x^{3}+5 x^{2}+3 x-4=0$ are α, β, γ and δ
(a) Given that $\alpha \beta \gamma \delta=-1$, write down the value of a
(b) $\quad \sum \alpha \beta$ is (sloppy) shorthand for "sum of the product pairs of roots".

For a quartic $\sum \alpha \beta=\alpha(\beta+\gamma+\delta)+\beta(\gamma+\delta)+\gamma(\delta)$

$$
=\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta
$$

Write down the values of $\sum \alpha, \quad \sum \alpha \beta$ and $\sum \alpha \beta \gamma$
(c) Hence find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$

Question 3

Further A-Level Examination Question from May 2018, IAL, F1, Q7 (Edexcel)
It is given that α and β are roots of the equation $5 x^{2}-4 x+3=0$
Without solving the equation,
(a) find the exact value of $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
(b) find a quadratic equation which has roots $\frac{3}{\alpha^{2}}$ and $\frac{3}{\beta^{2}}$ giving your answer in the form $a x^{2}+b x+c=0$, where a, b and c are integers.

Question 4

(i) For the general cubic, $a x^{3}+b x^{2}+c x+d=0$, write down from memory the formula for $\alpha^{3}+\beta^{3}+\gamma^{3}$
(ii) Show that your part (i) formula yields the same expression as proven in section " 6.2 Sum of Cubes for a Depressed Cubic" when $b=0$ in the general cubic equation.
[2 marks]
(iii) Consider the cubic equation,

$$
x^{3}+3 x^{2}+50=0
$$

Using a suitable substitution, transform this into a depressed cubic.
(iv) By thinking of $\alpha^{3} \beta^{3}+\beta^{3} \gamma^{3}+\gamma^{3} \alpha^{3}$ as $P^{3}+Q^{3}+R^{3}$ and using the same formula as in part (i) derive a formula for $\alpha^{3} \beta^{3}+\beta^{3} \gamma^{3}+\gamma^{3} \alpha^{3}$ with component parts that are either $\alpha+\beta+\gamma$ or $\alpha \beta+\beta \gamma+\gamma \alpha$ or $\alpha \beta \gamma$.
(\mathbf{v}) Let α, β and γ be the roots of your part (iii) depressed cubic.
Without solving the equation find a cubic with roots, α^{3}, β^{3} and γ^{3} in the form $w^{3}+p w^{2}+q w+r$ where p, q and r are integers.

Question 5

$$
f(x)=m x^{3}+12 x^{2}+4 x+16 \quad \text { where } m \text { is a real constant }
$$

Given that,

- f has at least one root on the imaginary axis

Solve completely,

$$
f(x)=0
$$

Question 6

Prove that the roots of $x^{3}+p x+q x+r=0$ form an Arithmetic Progression
if and only if $2 p^{3}+27 r=9 p q$

