Further A-Level Pure Mathematics
 Vectors III : Core 1

2.1 Intersecting Lines In Three Dimensions

In two dimensions if two distinct lines are not parallel they must have a point of intersection. In three dimensions the same is not true; it is possible for two lines that are not parallel lines to not intersect. Such lines are said to be SKEW.

2.2 Example

Determine if the following lines intersect or if they are skew.

$$
\boldsymbol{r}_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right) \quad \text { and } \quad \boldsymbol{r}_{2}=\left(\begin{array}{l}
9 \\
2 \\
5
\end{array}\right)+\mu\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right)
$$

2.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 32

Question 1

(i) Show that the following lines intersect;

$$
\boldsymbol{r}_{1}=\left(\begin{array}{c}
2 \\
3 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{c}
-2 \\
4 \\
1
\end{array}\right) \quad \text { and } \quad \boldsymbol{r}_{2}=\left(\begin{array}{c}
-6 \\
-3 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
5 \\
1 \\
-2
\end{array}\right)
$$

(ii) Find the coordinates of the point of intersection.

Recall that in three dimensions the scalar product is;

$$
\begin{aligned}
& \left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \\
& a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}} \sqrt{b_{1}{ }^{2}+b_{2}{ }^{2}+b_{3}{ }^{2}} \cos \theta
\end{aligned}
$$

(iii) Use this to find, to the nearest 0.1°, the acute angle between the lines. (Remember to use the direction part of the lines !)

Question 2

C4 Examination Question from June 2007, Q5
The line l_{1} has equation;

$$
\boldsymbol{r}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

The line l_{2} has equation;

$$
r=\left(\begin{array}{l}
1 \\
3 \\
6
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)
$$

(a) Show that l_{1} and l_{2} do not meet.

The point A is on l_{1} where $\lambda=1$, and the point B is on l_{2} where $\mu=2$
(b) Find the cosine of the acute angle between $A B$ and l_{1}

Question 3

C4 Examination Question from June 2009, Q7
Relative to a fixed origin O, the point A has position vector $8 \boldsymbol{i}+13 \boldsymbol{j}-2 \boldsymbol{k}$, the point B has position vector $10 \boldsymbol{i}+14 \boldsymbol{j}-4 \boldsymbol{k}$ and the point C has position vector $9 \boldsymbol{i}+9 \boldsymbol{j}+6 \boldsymbol{k}$

The line l passes through the points A and B
(a) Find a vector equation for the line l
(b) Find $|\overrightarrow{C B}|$
[2 marks]
(c) Find the size of the acute angle between the line segment $C B$ and the line l, giving your answer in degrees to 1 decimal place.
(d) Find the shortest distance from the point C to the line l

[3 marks]

The point X lies on l
Given that the vector $\overrightarrow{C X}$ is perpendicular to l
(e) find the area of triangle $C X B$, giving your answer to 3 significant figures.

