3.1 Mutually Perpendicular Vectors

The Scalar Product (Also called The Dot Product)

By definition : $\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$

Where $|\boldsymbol{a}|$ and $|\boldsymbol{b}|$ are the magnitudes of vectors \boldsymbol{a} and \boldsymbol{b}
θ is the angle between vectors \boldsymbol{a} and \boldsymbol{b}

Whenever angles are involved in a problem involving vectors, use the scalar product with the DIRECTION PARTS of the vector equations of the lines.

A consequence of the definition is that The Scalar Product is a very good detector of 90° angles, because if $\theta=90^{\circ}$, then $\cos \theta=0$.

Mutually Perpendicular Vectors

- If two vectors are mutually perpendicular, their scalar product will be zero.
- If the scalar product is zero, vectors \boldsymbol{a} and \boldsymbol{b} are mutually perpendicular.

3.2 Example

Prove that the following two lines are mutually perpendicular;

$$
\boldsymbol{r}_{1}=\left(\begin{array}{c}
-6 \\
5 \\
-7
\end{array}\right)+\lambda\left(\begin{array}{c}
4 \\
7 \\
-14
\end{array}\right) \quad \text { and } \quad \boldsymbol{r}_{2}=\left(\begin{array}{c}
12 \\
3 \\
-7
\end{array}\right)+\mu\left(\begin{array}{c}
7 \\
12 \\
8
\end{array}\right)
$$

3.3 Proof of The Scalar Product Formula In Two Dimensions

Prove that for any two vectors;

$$
\binom{a_{1}}{a_{2}} \text { and }\binom{b_{1}}{b_{2}}
$$

it follows that;

$$
a_{1} b_{1}+a_{2} b_{2}=\sqrt{a_{1}^{2}+a_{2}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}} \cos \theta
$$

The Proof

By definition;

$$
\boldsymbol{a} \bullet \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta
$$

Let

$$
\boldsymbol{a}=\binom{a_{1}}{a_{2}} \text { in which case }|\boldsymbol{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}
$$

Similarly

$$
\boldsymbol{b}=\binom{b_{1}}{b_{2}} \text { in which case }|\boldsymbol{b}|=\sqrt{b_{1}^{2}+b_{2}^{2}}
$$

Thus, from the definition

$$
\begin{aligned}
\boldsymbol{a} \bullet \boldsymbol{b} & =|\boldsymbol{a}||\boldsymbol{b}| \cos \theta \\
& =\sqrt{{a_{1}^{2}}^{2}+a_{2}^{2}} \sqrt{{b_{1}^{2}}^{2}+{b_{2}^{2}}^{2}} \cos \theta
\end{aligned}
$$

However,

$$
\begin{aligned}
\boldsymbol{a} \bullet \boldsymbol{b} & =\left(a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}\right) \bullet\left(b_{1} \boldsymbol{i}+b_{2} \boldsymbol{j}\right) \\
& =a_{1} b_{1} \boldsymbol{i} \bullet \boldsymbol{i}+a_{1} b_{2} \boldsymbol{i} \bullet \boldsymbol{j}+a_{2} b_{1} \boldsymbol{j} \bullet \boldsymbol{i}+a_{2} b_{2} \boldsymbol{j} \bullet \boldsymbol{j} \\
& =a_{1} b_{1}+a_{2} b_{2}
\end{aligned}
$$

because $\boldsymbol{i} \bullet \boldsymbol{i}=\boldsymbol{j} \bullet \boldsymbol{j}=1$, and $\boldsymbol{i} \bullet \boldsymbol{j}=\boldsymbol{j} \bullet \boldsymbol{i}=0$

Thus,

$$
a_{1} b_{1}+a_{2} b_{2}=\sqrt{a_{1}^{2}+a_{2}^{2}} \sqrt{{b_{1}^{2}+b_{2}^{2}}^{2}} \cos \theta
$$

3.4 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 32

Question 1

Show that the following two lines are mutually perpendicular;

$$
\boldsymbol{r}_{1}=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
5 \\
3 \\
-4
\end{array}\right) \quad \text { and } \quad \boldsymbol{r}_{2}=\left(\begin{array}{c}
4 \\
7 \\
-3
\end{array}\right)+\mu\left(\begin{array}{c}
7 \\
-9 \\
2
\end{array}\right)
$$

Question 2

Given that the following two lines are mutually perpendicular, find the value of a

$$
\boldsymbol{r}_{1}=\left(\begin{array}{c}
5 \\
-1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
a \\
4 \\
-3
\end{array}\right) \quad \text { and } \quad \boldsymbol{r}_{2}=\left(\begin{array}{c}
-2 \\
3 \\
-1
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
2 a \\
5
\end{array}\right)
$$

Question 3

$$
\begin{aligned}
a & =p \boldsymbol{i}+6 \boldsymbol{j}-4 \boldsymbol{k} \\
b & =5 \boldsymbol{i}-3 \boldsymbol{j}-7 \boldsymbol{k}
\end{aligned}
$$

Find the value of p if \boldsymbol{a} and \boldsymbol{b} are perpendicular

Question 4

A, B and C are three points in three dimensional space with coordinates;

$$
A(6,3,7) \quad B(-3,8,5) \quad C(-4,-13,12)
$$

(a) Determine;
(i) $\overrightarrow{A B}$
(ii) $\overrightarrow{A C}$
(b) Show that $\angle B A C$ is a right angle
(c) Hence, or otherwise, find the area of $\triangle A B C$

Question 5

Determine;

$$
\binom{1}{m} \cdot\binom{1}{-\frac{1}{m}}
$$

[1 mark]

What well known GCSE result have you proved?
[1 mark]

Question 6

Write down an equation of the vector line that passes through the points;

$$
A(3,2,-1) \quad \text { and } \quad B(5,7,3)
$$

Question 7

Write down a vector line equation for a line that passes through the point $4 \boldsymbol{i}+\boldsymbol{j}-2 \boldsymbol{k}$ and which is parallel to the line with equation

$$
\boldsymbol{r}=3 \boldsymbol{i}+3 \boldsymbol{j}-5 \boldsymbol{k}+\lambda(-2 \boldsymbol{i}+8 \boldsymbol{j}+\boldsymbol{k})
$$

Question 8

Given that the vectors

$$
\boldsymbol{u}=\left(\begin{array}{c}
\lambda+1 \\
4 \\
1
\end{array}\right) \quad \text { and } \quad \boldsymbol{v}=\left(\begin{array}{c}
\lambda-5 \\
\lambda \\
-11
\end{array}\right)
$$

are perpendicular, find the possible values of λ

Question 9

This question is about finding a vector that is perpendicular to both of the lines

$$
\boldsymbol{r}_{1}=\left(\begin{array}{c}
10 \\
2 \\
10
\end{array}\right)+\lambda\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right) \quad \text { and } \quad \boldsymbol{r}_{2}=\left(\begin{array}{l}
7 \\
4 \\
7
\end{array}\right)+\mu\left(\begin{array}{c}
6 \\
-2 \\
7
\end{array}\right)
$$

Without loss of generality, assume the direction vector sought is of the form;

$$
\boldsymbol{d}=\left(\begin{array}{l}
1 \\
P \\
Q
\end{array}\right)
$$

(a) Obtain an equation, in P and Q, from the fact that;

$$
\left(\begin{array}{l}
1 \\
P \\
Q
\end{array}\right) \cdot\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)=0
$$

(b) Obtain a second equation, in P and Q, from the fact that;

$$
\left(\begin{array}{l}
1 \\
P \\
Q
\end{array}\right) \cdot\left(\begin{array}{c}
6 \\
-2 \\
-7
\end{array}\right)=0
$$

(c) Solve the two equations simultaneously to determine the value of P and the value of Q and hence give the required direction vector which is perpendicular to both of the lines \boldsymbol{r}_{1} and \boldsymbol{r}_{2}.

Question 10

Find a vector that is perpendicular to both of the lines

$$
\boldsymbol{r}_{1}=\left(\begin{array}{c}
-4 \\
7 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
4 \\
10 \\
-3
\end{array}\right) \quad \text { and } \quad \boldsymbol{r}_{2}=\left(\begin{array}{c}
8 \\
-7 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
5 \\
-9 \\
7
\end{array}\right)
$$

