Lesson 4

Further A-Level Pure Mathematics Vectors III : Core 1

4.1 Shortest Distance from Point to Line

Example

Question :

Find the shortest distance between the point P(-5, 7, 4)

and the line with equation
$$\mathbf{r} = \begin{pmatrix} 7 \\ -3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

Answer :

Call the location on the line that is closest to P the point X

4.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

Find the shortest distance between the point P(-3, 8, 0) and the line with equation

$$\boldsymbol{r} = \begin{pmatrix} 10\\3\\1 \end{pmatrix} + \mu \begin{pmatrix} 4\\-2\\1 \end{pmatrix}$$

Begin by calling the location on the line that is closest to P the point X

[4 marks]

Find the shortest distance between the point P(7, -1, -6) and the line with equation

$$\boldsymbol{r} = \begin{pmatrix} -7\\15\\2 \end{pmatrix} + \mu \begin{pmatrix} 2\\-4\\1 \end{pmatrix}$$

C4 Examination Question from January 2011, Q4 Relative to a fixed origin O, the point A has position vector $\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ and the point B has position vector $-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ The points A and B lie on a straight line l. (a) Find \overrightarrow{AB}

[2 marks]

(**b**) Find a vector equation of l

[2 marks] The point *C* has position vector 2i + pj - 4k with respect to *O*, where *p* is a constant. Given that *AC* is perpendicular to *l*, find

(**c**) the value of p

[4 marks]

 (\mathbf{d}) the distance AC

[2 marks]

With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_{1} : \mathbf{r} = (9\mathbf{i} + 13\mathbf{j} - 3\mathbf{k}) + \lambda(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$$
$$l_{2} : \mathbf{r} = (2\mathbf{i} - \mathbf{j} + \mathbf{k}) + \mu(2\mathbf{i} + \mathbf{j} + \mathbf{k})$$

where λ and μ are scalar parameters.

(**a**) Given that l_1 and l_2 meet, find the position vector of their point of intersection.

[5 marks]

(**b**) Find the acute angle between l_1 and l_2 , giving your answer in degrees to 1 decimal place

[3 marks]

Given that the point A has position vector 4i + 16j - 3k and that the point P lies on l_1 such that AP is perpendicular to l_1 ,

(c) Find the exact coordinates of P

[6 marks]

P3 Examination Question from January 2002, Q6 Relative to a fixed origin *O*, the point *A* has position vector $4\mathbf{i} + 8\mathbf{j} - \mathbf{k}$, and the point *B* has position vector $7\mathbf{i} + 14\mathbf{j} + 5\mathbf{k}$

(**a**) Find the vector \overrightarrow{AB}

[1 mark]

(**b**) Calculate the cosine of $\angle OAB$

[3 marks]

(c) Show that, for all values of λ , the point *P* with position vector $\lambda i + 2\lambda j + (2\lambda - 9) k$ lies on the line through *A* and *B* (**d**) Find the value of λ for which *OP* is perpendicular to *AB*

[3 marks]

(e) Hence find the coordinates of the foot of the perpendicular from O to AB

[2 marks]