Lesson 4

Further A-Level Pure Mathematics

Vectors III : Core 1

4.1 Shortest Distance from Point to Line

Example

Question :

Find the shortest distance between the point $P(-5,7,4)$
and the line with equation $\boldsymbol{r}=\left(\begin{array}{c}7 \\ -3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$

Answer :

Call the location on the line that is closest to P the point X

4.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

Find the shortest distance between the point $P(-3,8,0)$ and the line with equation

$$
\boldsymbol{r}=\left(\begin{array}{c}
10 \\
3 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right)
$$

Begin by calling the location on the line that is closest to P the point X

Question 2

Find the shortest distance between the point $P(7,-1,-6)$ and the line with equation

$$
\boldsymbol{r}=\left(\begin{array}{c}
-7 \\
15 \\
2
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
-4 \\
1
\end{array}\right)
$$

Question 3

C4 Examination Question from January 2011, Q4
Relative to a fixed origin O, the point A has position vector $\boldsymbol{i}-3 \boldsymbol{j}+2 \boldsymbol{k}$ and the point B has position vector $-2 \boldsymbol{i}+2 \boldsymbol{j}-\mathbf{k}$
The points A and B lie on a straight line l.
(a) Find $\overrightarrow{A B}$
(b) Find a vector equation of l
[2 marks]
The point C has position vector $2 \boldsymbol{i}+p \boldsymbol{j}-4 \boldsymbol{k}$ with respect to O, where p is a constant. Given that $A C$ is perpendicular to l, find
(c) the value of p
[4 marks]
(d) the distance $A C$

Question 4

With respect to a fixed origin O, the lines l_{1} and l_{2} are given by the equations

$$
\begin{aligned}
& l_{1}: r=(9 \boldsymbol{i}+13 \boldsymbol{j}-3 \boldsymbol{k})+\lambda(\boldsymbol{i}+4 \boldsymbol{j}-2 \boldsymbol{k}) \\
& l_{2}: \boldsymbol{r}=(2 \boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k})+\mu(2 \boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k})
\end{aligned}
$$

where λ and μ are scalar parameters.
(a) Given that l_{1} and l_{2} meet, find the position vector of their point of intersection.
(b) Find the acute angle between l_{1} and l_{2}, giving your answer in degrees to 1 decimal place

Given that the point A has position vector $4 \boldsymbol{i}+16 \boldsymbol{j}-3 \boldsymbol{k}$ and that the point P lies on l_{1} such that $A P$ is perpendicular to l_{1},
(c) Find the exact coordinates of P

Question 5

P3 Examination Question from January 2002, Q6
Relative to a fixed origin O, the point A has position vector $4 \boldsymbol{i}+8 \boldsymbol{j}-\boldsymbol{k}$, and the point B has position vector $7 \boldsymbol{i}+14 \boldsymbol{j}+5 \boldsymbol{k}$
(a) Find the vector $\overrightarrow{A B}$

[1 mark]

(b) Calculate the cosine of $\angle \mathrm{OAB}$
(c) Show that, for all values of λ, the point P with position vector $\lambda \boldsymbol{i}+2 \lambda \boldsymbol{j}+(2 \lambda-9) \boldsymbol{k}$ lies on the line through A and B
(d) Find the value of λ for which $O P$ is perpendicular to $A B$

[3 marks]

(e) Hence find the coordinates of the foot of the perpendicular from O to $A B$

