Lesson 5

5.1 Which Angle From The Scalar Product ?

$\triangle A B C$ is formed from the points $A(2,3), B(5,1)$ and $C(4,7)$
Determine the size of $\angle \mathrm{CAB}$ in degrees correct to one decimal place.

5.2 Exercise

$$
\begin{aligned}
& \text { Any solution based entirely on graphical } \\
& \text { or numerical methods is not acceptable } \\
& \text { Marks Available : } 50
\end{aligned}
$$

Question 1

You are given that,

$$
\overrightarrow{A B}=\left(\begin{array}{c}
-4 \\
1 \\
-8
\end{array}\right) \quad \text { and } \quad \overrightarrow{B C}=\left(\begin{array}{c}
3 \\
-2 \\
-6
\end{array}\right)
$$

(i) Write down the vector $\overrightarrow{B A}$
(ii) Determine $|\overrightarrow{B A}|$
(iii) Determine $|\overrightarrow{B C}|$
[1 mark]
(iv) Determine $\angle A B C$ in degrees, accurate to 1 decimal place.
(v) Find the area of $\triangle A B C$

Question 2

$\triangle A B C$ is formed from the points $A(-4,7,3), B(-8,5,2)$ and $C(9,1,-6)$ Determine the size of $\angle \mathrm{BAC}$ in degrees correct to one decimal place.

Question 3

C4 Examination Question from January 2007, Q7
The point A has position vector $\boldsymbol{a}=2 \boldsymbol{i}+2 \boldsymbol{j}+\boldsymbol{k}$ and the point B has position vector $\boldsymbol{b}=\boldsymbol{i}+\boldsymbol{j}-4 \boldsymbol{k}$ relative to an origin O.
(a) Find the position vector of the point C, with position vector \boldsymbol{c} given by $\boldsymbol{c}=\boldsymbol{a}+\boldsymbol{b}$
(b) Show that $O A C B$ is a rectangle, and find its exact area

The diagonals of the rectangle, $A B$ and $O C$ meet at the point D
(c) Write down the position vector of the point D
[1 mark]
(d) Find the size of the angle $A D C$

Question 4

C4 Examination Question from June 2010, Q7 (edited)
The line l_{1} has equation;

$$
\boldsymbol{r}=\left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

where λ is a scalar parameter.
The line l_{2} has equation;

$$
\boldsymbol{r}=\left(\begin{array}{c}
0 \\
9 \\
-3
\end{array}\right)+\mu\left(\begin{array}{l}
5 \\
0 \\
2
\end{array}\right)
$$

where μ is a scalar parameter.
Given that l_{1} and l_{2} meet at the point C, find
(a) the coordinates of C

The point A is the point on l_{1} where $\lambda=0$ and the point B is the point on l_{2} where $\mu=-1$
(b) Find the size of the angle $A C B$.

Give your answer in degrees to 2 decimal places.
(c) Hence, or otherwise, find the area of the triangle $A B C$

Question 5

C4 Examination Question from January 2012, Q7
Relative to a fixed origin O, the point A has position vector $2 \boldsymbol{i}-\boldsymbol{j}+5 \boldsymbol{k}$, the point B has position vector $5 \boldsymbol{i}+2 \boldsymbol{j}+10 \boldsymbol{k}$ and the point D has position vector $-\boldsymbol{i}+\boldsymbol{j}+4 \boldsymbol{k}$

The line l passes through the points A and B
(a) Find the vector $\overrightarrow{A B}$
(b) Find a vector equation for the line l
(c) Show that the size of the angle $B A D$ is 109°, to the nearest degree.

The points A, B and D, together with a point C, are the vertices of the parallelogram $A B C D$, where $\overrightarrow{A B}=\overrightarrow{D C}$
(d) Find the position vector of C
(e) Find the area of the parallelogram $A B C D$, giving your answer to 3 significant figures.
(f) Find the shortest distance from the point D to the line l, giving your answer to 3 significant figures.

